Measuring the spectrum of UHECR with the Pierre Auger Observatory

Roberto Pesce

for the Pierre Auger Observatory Collaboration

University of Genova and INFN

27 May 2011 III RICAP

Outline

Pierre Auger Observatory

Hybrid Data Analysis and Spectrum

- On-time Calculation
- Time Dependent Monte Carlo Simulation
- Event Selection
- Hybrid Exposure
- Hybrid Spectrum
- Surface Detector Exposure and Spectrum
- Combined Spectrum
- Conclusions

Pierre Auger Observatory

(see also Carla Bonifazi's talk)

Surface Detector (SD)

- 1660 water Cherenkov detectors
- 1.5 km spaced (3000 km² area)
- 100% duty cycle

Fluorescence Detector (FD)

- 4+1 Fluorescence sites
- 6(3) telescopes per site (30° FoV)

R. Pesce

13% duty cycle

3/22

UHECR Spectrum

Different detectors \Rightarrow different data \Rightarrow distinct spectra

- $FD+SD \Rightarrow Hybrid Spectrum$
 - ▶ *E* ≳ 10¹⁸ eV
 - Iower exposure
 - ankle region

 $\mathsf{SD} \text{ only} \Rightarrow \textbf{SD} \text{ } \textbf{SPECTRUM}$

- ► *E* ≳ 10^{18.5} eV
- higher exposure
- trans-GZK region

COMBINED SPECTRUM

Hybrid Data Analysis

BRASS HYBRID EVENTS i.e FD event + 1 SD station

Benefits

- increase statistics w.r.t golden hybrid events (reconstructed with both FD and SD);
- extend the spectrum below SD threshold (10^{18.5} eV →~10¹⁸ eV);
- improve geometrical reconstruction (0.6° angular res. and 50 m core location)
- improve energy reconstruction (10% resolution)

- 1

Cosmic Ray Spectrum with Hybrid Events Spectrum

$$J(E) = \frac{\mathrm{d}N}{\mathrm{d}E\mathrm{d}A\mathrm{d}t\mathrm{d}\Omega} \simeq \frac{\Delta N_{\mathrm{sel}}(E)}{\Delta E} \frac{1}{\mathcal{E}(E)}$$

Exposure

$$\mathcal{E}(\boldsymbol{E}) = \int_{\mathcal{T}} \int_{\Omega} \int_{S} \varepsilon(\boldsymbol{E}, t, \theta, \phi, \boldsymbol{x}, \boldsymbol{y}) \, \cos \theta \, \mathrm{d}S \, \mathrm{d}\Omega \, \mathrm{d}t = \int_{\mathcal{T}} \mathcal{A}(\boldsymbol{E}, t) \, \mathrm{d}t$$

Configurations changing over the time

- SD stations (deployment, status, ...)
- FD telescopes (construction, optical configurations, DAQ failures, ...)
- Atmospheric conditions

R. Pesce

Cosmic Ray Spectrum with Hybrid Events Spectrum

$$J(E) = \frac{\mathrm{d}N}{\mathrm{d}E\mathrm{d}A\mathrm{d}t\mathrm{d}\Omega} \simeq \frac{\Delta N_{\mathrm{sel}}(E)}{\Delta E} \frac{1}{\mathcal{E}(E)}$$

Exposure

$$\mathcal{E}(\boldsymbol{E}) = \int_{\mathcal{T}} \int_{\Omega} \int_{\mathcal{S}} \varepsilon(\boldsymbol{E}, t, \theta, \phi, \boldsymbol{x}, \boldsymbol{y}) \, \cos \theta \, \mathrm{d}\boldsymbol{S} \, \mathrm{d}\Omega \, \mathrm{d}t = \int_{\mathcal{T}} \mathcal{A}(\boldsymbol{E}, t) \, \mathrm{d}t$$

The Method

Take into account all the detector configurations and their time variability simulating a sample of events which exactly reproduces the experimental conditions

$$\mathcal{E}(E_{\rm rec}) = 2\pi \, \mathrm{S}_{\mathrm{MC}} \, \mathrm{T} \, \sum_{i} \frac{n(E_{\rm rec}, \cos \theta_{i})}{N(E_{\mathrm{MC}}, \cos \theta_{i})} \, \cos \theta_{i} \, \Delta \cos \theta_{i};$$
6/22 R. Pesce To the UHECR Spectrum

Time Dependent MC Simulation Shower Simulation

- CONEX shower profiles
- Full Simulation of the FD
- Parameterization of the time of the SD station

Simulation steps

- Choose a random time in the sidereal time
- Retrieve the on-time fraction
- Retrieve the characteristics of the detector (both FD and SD)
- Shower simulation(CONEX + atmosphere + detector)
- Reconstruction and selection

Cross-check performed using full CORSIKA+Geant4 simulations

On-time Calculation (2005 - 2008)

The uncertainty on the knowledge of the on-time is 4%

.

Selection Criteria

Profile Selections

- χ^2 /Ndof of the profile <2.5
- X_{max} in the field of view
- Cherenkov light <50%</p>
- energy resolution <20%</p>
- hole in profile < 20%</p>

Fiducial Selections

- energy of the shower > 10¹⁸ eV
- zenith angle of the shower < 60°</p>
- station for the hybrid reconstruction within 1500 m from shower axis.
- fiducial cuts to remove dependences from primary composition and systematic energy shifts

9/22

R. Pesce

Atmospheric Selections

- lidar data available
- aerosol content measured
- cloud coverage <25%</p>

Time Dependent MC Simulation

10 / 22

Hybrid Exposure - Nov 2005 / Jun 2008

Systematic uncertainty: ~10% (~6%)

- on-time ~ 4%
- composition ~ 8% (~1%) at 10¹⁸ (> 10¹⁹) eV
- hadronic interaction model ~ 2%

▶ MC input spectra ~ 2%

đị ri

UHECR Spectrum

Hybrid Spectrum - Nov 2005 / Jun 2008

Hybrid Spectrum - Nov 2005 / Jun 2008

SD Spectrum - Jan 2004 / Dec 2008

Selection criteria

θ < 60°

 station with largest signal surrounded by 6 neighbors

Full trigger efficiency at \sim 3 EeV

More than 3.5×10^4 events.

- exposure: integrate the number of active elementary cells over the time
- total exposure: 12790 km² sr yr

der.

SD Spectrum - Jan 2004 / Dec 2008

$$J(E) = \frac{\Delta N_{\rm sel}(E)}{\Delta E} \frac{1}{\mathcal{E}(E)}$$

SD energy estimator calibrated with golden hybrid events

Systematic uncertainty in energy scale $\sim 22\%$

Systematic uncertainty: ~6%

- exposure systematics ~ 3%
- forward-folding analysis systematics ~ 5%

14 / 22

R. Pesce

de.

Combined spectrum - Jan 2004 / Dec 2008

FIT: power laws + smooth functions

- \blacktriangleright spectral indexes: 3.26 \pm 0.04 and 2.55 \pm 0.04
- ▶ ankle at 10^{18.60±0.01} eV
- ▶ flux reduced to one half w.r.t. power law at 10^{19.61±0.03} eV

de

UHECR Spectrum

Combined spectrum - Jan 2004 / Dec 2008

FIT: power laws + smooth functions

- \blacktriangleright spectral indexes: 3.26 \pm 0.04 and 2.55 \pm 0.04
- ankle at 10^{18.60±0.01} eV
- flux reduced to one half w.r.t. power law at 10^{19.61±0.03} eV

15/22

R. Pesce

te.

Conclusions

- Data between 2004 and 2008 analysed
- Two independent spectra: SD and hybrid
- Hybrid exposure calculated using time dependent MC simulations
- Combination of the two spectra
- Ankle at 10^{18.60±0.01} eV
- Flux suppression by a factor 2 at 10^{19.61±0.03} eV
- Significance of the suppression larger than 20σ

THANK YOU !!!

References: The Pierre Auger Collaboration, Phys. Lett. B 685 (2010) 239-246 The Pierre Auger Collaboration, Astrop. Phys. 34 (2011) 368-381 The Pierre Auger Collaboration, NIM A613 (2010) 29-39

Conclusions

- Data between 2004 and 2008 analysed
- Two independent spectra: SD and hybrid
- Hybrid exposure calculated using time dependent MC simulations
- Combination of the two spectra
- Ankle at 10^{18.60±0.01} eV
- Flux suppression by a factor 2 at 10^{19.61±0.03} eV
- Significance of the suppression larger than 20σ

THANK YOU !!!

References: The Pierre Auger Collaboration, Phys. Lett. B 685 (2010) 239-246 The Pierre Auger Collaboration, Astrop. Phys. 34 (2011) 368-381 The Pierre Auger Collaboration, NIM A613 (2010) 29-39

On-time Calculation

To follow the detector evolution, the on-time fraction has been calculated for each telescope as a function of time.

 $T_{width} = 10 \text{ min}$ - compromise between statistics and accuracy

On-time fraction:

$$egin{aligned} f(i,t) &= &arepsilon_{ ext{shutter}}(i,t) \cdot arepsilon_{ ext{DAQ}}(i,t) \cdot \ &\cdot arepsilon_{ ext{Lidar}}(oldsymbol{s},t) \cdot \delta_{ ext{SD}}(oldsymbol{s},t) \end{aligned}$$

$$i = tel; s = site; t = time$$

Main contributions:

- $\varepsilon_{\text{shutter}}(i, t)$ Dead-time due to the closed shutters.
- $\varepsilon_{\text{DAQ}}(i, t)$ Dead-time due to the finite readout speed of the DAQ.
- $\triangleright \varepsilon_{\text{Lidar}}(e, t)$ Veto from the activity of the atmospheric monitoring.
- $\delta_{SD}(e, t)$ Check of the status of the SD.

đ.

Time Dependent MC Simulation - Full MC comparison

Hybrid Probability

Cross Check - Data/MC Comparison

Fiducial Volume Cut - Energy scale

Trigger threshold dependence on a possible systematic energy shift removed by requiring the core to lie within a distance from the FD:

Field of View Cut - Mass Dependence

The limited field of view of the fluorescence detector and the requirements of observing the shower maximum introduce a different selection efficiency for different primary masses.

ġ

Field of View Cut - Mass Dependence

The systematic uncertainty on the mass composition is reduced to \sim 8% (\sim 1%) at 10¹⁸ eV (above 10¹⁹ eV)