Main results from the PAMELA space experiment after 5 years in flight

ROBERTA SPARVOLI (UNIVERSITY OF ROME TOR VERGATA AND INFN)

ON BEHALF OF

THE PAMELA COLLABORATION

PAMELA

Payload for Matter/antimatter Exploration and Light-

nuclei Astrophysics

Direct detection of CRs in space
Main focus on antiparticles (antiprotons and positrons)

• PAMELA on board of Russian satellite **Resurs DK1**

- Orbital parameters:
 - inclination $\sim 70^{\circ} \implies \text{low energy}$
 - altitude ~ 360-600 km (elliptical)
 - active life >3 years (\Rightarrow high statistics)

Launch from Baykonur

→ Launched on 15th June 2006
 → PAMELA in continuous data-taking mode since then!

PAMELA detectors

Main requirements:

- high-sensitivity antiparticle identification

- precise momentum measurement

Absolute fluxes of primary GCRs

NEEDED FOR:

- (a) IDENTIFY SOURCES AND ACCELERATION PROPAGATION MECHANISMS OF COSMIC RAYS;
- (b) ESTIMATE THE PRODUCTION OF SECONDARY PARTICLES, SUCH AS POSITRONS AND ANTIPROTONS, IN ORDER TO DISENTANGLE THE SECONDARY PARTICLE COMPONENT FROM POSSIBLE EXOTIC SOURCES;
- (c) ESTIMATE THE PARTICLE FLUX IN THE GEOMAGNETIC FIELD AND IN EARTH'S ATMOSPHERE TO DERIVE THE ATMOSPHERIC MUON AND NEUTRINO FLUX.

H & He absolute fluxes

- First high-statistics and high-precision measurement over three decades in energy
- Dominated by systematics (~4% below 300 GV)

Low energy
 → minimum solar activity
 (\$\$\phi\$ = 450÷550 GV\$)

• High-energy

 → a complex structure of
 the spectra emerges...

P & He absolute fluxes @ high energy

Deviations from single power law (SPL):

• Spectra gradually soften in the range 30÷230GV

 Abrupt spectral hardening @~235GV

Eg: statistical analysis for protons

- SPL hp in the range 30÷230 GV rejected @ >95% CL
- SPL hp above 80 GV rejected @ >95% CL

H/He ratio vs R

Instrumental p.o.v.

• Systematic uncertainties **partly cancel out** (livetime, spectrometer reconstruction, ...)

Theoretical p.o.v.

- Solar modulation negligible
 → information about IS spectra down to GV region
- Propagation effects

 (diffusion and fragmentation) negligible above ~100GV
 → information about source spectra

P/He ratio vs R

 First clear evidence of different H and He slopes above ~10GV

 Ratio described by a single power law (in spite of the evident structures in the individual spectra)

Electron energy measurements

Two independent ways to determine electron energy:

1. Spectrometer

- Most precise
- Non-negligible energy losses (bremsstrahlung) above the spectrometer → unfolding

2. Calorimeter

- Gaussian resolution
- No energy-loss correction required
- Strong containment requirements
 - \rightarrow smaller statistical sample

Electron identification:

- Negative curvature in the spectrometer
- EM-like interaction pattern in the calorimeter

Electron absolute flux

 Largest energy range covered in any experiment hitherto with no atmospheric overburden

Low energy

• minimum solar activity ($\phi = 450 \div 550 \text{ GV}$)

•High energy

- No significant disagreement with recent ATIC and Fermi data
- Softer spectrum consistent with both systematics and growing positron component

Antiparticles

SECONDARY ORIGIN, COMING FROM INTERACTION OF PRIMARI CR WITH THE INTERSTELLAR MEDIUM

Positron/electron identification:

- Positive/negative curvature in the spectrometer
 → e⁻/e⁺ separation
- EM-like interaction pattern in the calorimeter
 → e⁺/p (and e⁻/p-bar) separation

Main issue:

- Interacting proton background:
 - fluctuations in hadronic shower development: $\pi_{o} \rightarrow \gamma \gamma$ mimic pure e.m. showers
 - p/e^+ : ~10³ @1GV ~10⁴ @100GV

→ Robust e⁺ identification

Shower topology + energy-rigidity match

\rightarrow Residual background evaluation

- Done with flight data
- No dependency on simulation

Positron fraction

 Low energy
 → charge-dependent solar modulation (see later)

High energy

 → (quite robust)
 evidence of positron
 excess above 10GeV

FERMI positron/ electron ratio

The Fermi-LAT has measured the cosmicray positron and electron spectra separately, between 20 – 130 GeV, using the Earth's magnetic field as a charge discriminator

The two independent methods of background subtraction,Fit-Based and MC-Based, produce consistent results

The observed positron fraction is consistent with the one measured by PAMELA

Warit Mitthumsiri et al. @ Fermi Symposium (May 2011)

Antiprotons

Antiproton/proton identification:

- Negative/positive curvature in the spectrometer
 → p-bar/p separation
- Rejection of EM-like interaction patterns in the calorimeter

 \rightarrow p-bar/e⁻ (and p/e⁺) separation

Main issue:

• Proton "spillover" background:

wrong assignment of charge-sign @ high energy due to finite spectrometer resolution

→ Strong tracking requirements

- Spatial resolution < $4\mu m$
- R < MDR/6
- \rightarrow Residual background subtraction
 - Evaluated with simulation (tuned with in-flight data)
 - ~30% above 100GeV

Antiproton flux

- Largest energy range covered hiterto
- Overall agreement with pure secondary calculation
- Experimental uncertainty (stat⊕sys) smaller than spread in theoretical curves
 → constraints on propagation parameters

Antiproton-toproton ratio

• Overall agreement with pure secondary calculation

A challenging puzzle for CR physicists

Antiprotons

 \rightarrow Consistent with pure secondary production

Positrons→ Evidence for an excess

Positron-excess interpretations

Dark matter

- boost factor required
- lepton vs hadron yield must be consistent with pbar observation

<u>Astrophysical processes</u>

- known processes
- large uncertainties on environmental parameters

Positrons VS antiprotons

- Large uncertainties on propagation parameters allows to accommodate an additional component
- A p-bar rise above 200GeV is not excluded

Positrons vs electrons

• Fit of electron flux

Two scenarios:

- standard (primary +secondary components)
- 2. additional primary e⁻ (and e⁺) component

 Electron data are not inconsistent with standard scenario, but...

 ...an additional component better reproduces positron data

Solar and terrestrial physics

Solar modulation: time dependence

PAMELA PROTON FLUX

Solar modulation: time dependence

PAMELA ELECTRON FLUX

Charge-dependent solar modulation

Solar modulation depends on Sun magnetic field orientation

Trapped antiprotons

First measurement of p-bar trapped in the inner belt

29 p-bars discovered in SAA and **traced back to mirror points**

p-bar flux exceeds GRC flux by 3 orders of magnitude, as expected by models Adriani et al. – submitted to APJ Letters

13 Dec 2006 Solar Flare

Adriani et al. – submitted to APJ

PAMELA has been in orbit and studying cosmic rays for ~ 5 years. Its operation time ends in 2011.

>10⁹ triggers registered and >20 TB of data have been down-linked.

- **H and He absolute fluxes** → Measured up to ~1.2TV. Most precise measurement so far. Complex spectral structures observed (spectral hardening at ~200GV) → New features in the paradigm of CR acceleration in SNRs!
- Electron absolute flux → Measured up to ~600GeV. No evident deviations from standard scenario, but not inconsistent with an additional electron component.
- **High energy positron fraction (>10 GeV)** → Increases significantly (and unexpectedly!) with energy. → Primary source?
- Antiproton energy spectrum \rightarrow Measured up to ~200 GeV. No significant deviations from secondary production expectations.
- Solar physics: measurement of modulated fluxes and solar-flare particle spectra
- **Physics of the magnetosphere**: first measurement of trapped antiproton flux

Other studies and forthcoming results:

- Upgrade of positron analysis (increased statistics, higher energy)
- Primary and secondary-nuclei abundance (up to Oxygen)
- H and He isotope abundance
- Solar modulation (long-term flux variation and chargedependent effects)
- Upper limit to anti-He abundance

Overall systematic uncertainties

 At low R selectionefficiency uncertainties dominate

• Above 500GV trackingsystem (coherent) misalignment dominates

Spectrometer systematic uncertainty

- Evaluated from in-flight electron/positron data by comparing the spectrometer momentum with the calorimeter energy
- Upper limit set by positron statistics:

$$\Delta$$
η_{sys} ~1·10⁻⁴ GV⁻²

(MDR=200÷1500TV)

Proton background evaluation

- Background evaluated from in-flight data
- No dependence on simulation

Method:

- 1.Estimation of PDFs for electron (a) and proton (b) experimental distributions
- 2.Fit of positronexperimental distribution(c) with mixed PDF

3.Statistical errors determination with bootstrap procedure

Fraction of energy along the track, after constraints on energymomentum match and shower starting point

Proton background evaluation

Fraction of energy along the track, after constraints on energymomentum match and shower starting point

Time Dependence

Flux variation as a function of time for rigidities between 0.72 and 1.04 GV

Time Dependence

Increase of the flux measured by PAMELA from July 2006 to December 2008

