

3rd Roma International Conference on Astro-particle Physics 25-21 May 2011 Doma Italy

The data acquisition and transport design for NEMO phase 2

F. Simeone on behalf of the NEMO Collaboration

F. Simeone – University "Sapienza" and INFN Sec. Roma1

Underwater Cherenkov Istituto Nazionale di Fisica Nucleare Deutrino detectors

F. Simeone – University "Sapienza" and INFN Sec. Roma1

NEMO is an underwater neutrino telescope experiment

- Events reconstructed with Čerenkov photon detection
- Photo-Multipliers (PMT) are used as sensors
- Background rate (due to ⁴⁰K) ~70kHz
- PMT Signal Bandwidth <100MHz
- PMT full hit length ~70ns
- Timing coherency on the apparatus scale for hit "time stamping"

F. Simeone – University "Sapienza" and INFN Sec. Roma1

- Optical Signal digitization: sampling 200MHz@8bit
 →Background bit rate per PMT is about 10Mbps
 →4 OMs produce about 40Mbps per floor
- Acoustic Signal digitization: sampling 192Hz@24bit
 →bit rate per hydrophone is about 6Mbps
 →2 hydrophones produce about 12Mbps per floor
- Communication Synchronous Protocol
 - Clock and bit stream on same transport medium
 - Compliant with DWDM standards
 - Reduced number of fibers

Floor scheme

Floor Control Module Board

- Off-Shore On-Shore link
 - Fiber optic interface (DWDM transceiver)
 - FEM Interface (proprietary protocol)
 - Acoustic Interface (AES3 standard protocol)
 - Slow Control Board (SPI standard protocol)
- Communication with other electronics:
 - Slow Control Board
 - Acoustic Board
 - Time Calibration Board
- Safe reconfiguration from remote
- Used on-shore for bidirectional data communication

Front End Module Board

- Signal sampling: two 100 MHz 8bit-ADCs
- Analog conditioning:
 - quasi-logarithmic compander => 13 bit
 - on-board calibration circuit
 - ADCs pedestal adjustment
- PMT HV management
- Low Power: 0.3A @ 3.3V
- Safe reconfiguration from remote

eFCM Board

Xilinx Virtex5 development board:

- •Embedded PowerPC
- Embedded uBlaze
- •Receive and distribute underwater the GPS clock
- •Manage the optical communication with the underwater floor
- •Extract the acoustic signals and distribute them over a dedicated physical link
- •Extract the PMT signals and distribute them over a gigabit ethernet
- •Manage the point-to-point connection with the remote instruments

F. Simeone – University "Sapienza" and INFN Sec. Roma1

AES3

Board	Jitter RMS [ps]
Generator	13
PLL	7.2
FantimeV1	8.2
eFcm	10
FCM	15

Link budget

Test bench: losses of passive components	Power levels [dBm]	Cable Termination Assembly and VEOC losses	Worst Case	Mean Value
Single Channel launched power	1,71	optical connector (ALCATEL CTA)	-0,75	-0,3
submarine cable output	-17,93	ROV mateable connector	-0,75	-0,3
3 dB coupler	-20,93	(ALCATEL CTA)		
Circulator	-21,25	ROV mateable connector (DU)	-0,75	-0,3
Add & Drop - Power Control	-22,8	Optical connector in VEOC	-0,75	-0,3
Add & Drop - Acoustic Positioning	-23,12			
Add & Drop - 1° and 3°	-24,34	Add & Drop #8	-3,2	-1,6
Add & Drop - 5° and 7°	-24,96	Optical power at receiver input	-32,75	-29,35
Add & Drop - 11° to 15°	-25	Receiver sensitivity	-33	-33
Circulator	-26,55			
Add & Drop #8	-3,2	Sistem Margin [dB]	0,25	3,65

38dB for a BER of 10⁻¹² at 800Mb/s

8.65dB margin without the raman amplifier

F. Simeone – University "Sapienza" and INFN Sec. Roma1

Floor integration

F. Simeone – University "Sapienza" and INFN Sec. Roma1

Floor vessel assembly

NEUTRINO MEDITERRANEAN OBSERVATORY

F. Simeone – University "Sapienza" and INFN Sec. Roma1

- The synchronous protocol simplifies the overall design
- Transmission exploits optical passive devices
- The transmission latency is fixed
- The FCM board implements a point to point synchronous link between boards and sensors using different protocols.
- Powerful mechanism of safe reconfiguration
- Usefulness of hit waveform for DAQ tuning
- Tower deployment foreseen by the end of the year

BACKUP SLIDES

F. Simeone – University "Sapienza" and INFN Sec. Roma1

The Cosmic Ray Spectrum

Absorption lenght of protons and gammas in the Universe

NEUTRINO MEDITERRANEAN OBSERVATORY

F. Simeone – University "Sapienza" and INFN Sec. Roma1

NF

- Clock generator (80 MHz):
 - Jitter = 13 ps

F. Simeone – University "Sapienza" and INFN Sec. Roma1

- Dejittered clock from PLL (80 MHz):
 - Jitter = 7.2ps

F. Simeone – University "Sapienza" and INFN Sec. Roma1

- LVDS clock distributed by FanTime (80 MHz):
 - Jitter = 8.2 ps

F. Simeone – University "Sapienza" and INFN Sec. Roma1

- eFcm Transmit Clock (40 MHz):
 - Jitter = 10.6 ps
 - Measured on ML507
 SMA connector;

F. Simeone – University "Sapienza" and INFN Sec. Roma1

- Off-Shore recovered clock (40 MHz):
 - Jitter = 15 ps

F. Simeone – University "Sapienza" and INFN Sec. Roma1