

Radio Detection of High-Energy Cosmic Rays

Motivation: Cosmic Rays

June 2011, Roma Tre, Italia

Radio from Air Showers

Detection principle:

-Geomagnetic deflection of electrons and positrons -Time-variation of number of charged particles -Time-variation of charge excess radiation -and possibly more (refraction index)

➔ lead to coherent emission in atmospheric air showers (initiated by UHECR)

- MHz frequency range !
- µV/m-range amplitude
- few ns duration

"Way of Success" of EAS radio detection technique

→ The idea (70ies)

- ➔ proof-of-principle ➔ infancy test experiments
- → engineering arrays → hybrid CR physics
- → stand-alone detection technique
- 1. Calibration (understanding) radio emission
 - Dependencies of radio signal
 - Fixing emission mechanism(s) = simulations
- 2. Capability of the radio detection technique
 - Sensitivity to energy, direction, composition
- 3. High-Energy Cosmic Ray Physics
 - Hybrid (superhybrid) measurements
 - Stand-alone measurements

Monte Carlo Simulations

Presently large progress in Theory and Simulation

-Very different approaches -Large competition -But also good co-operation

Present Models:

REAS3 MGMR ZHAires SELFAS Konstantinov/Engel

Huege, ARENA 2010, NIM A

Radio from Air Showers

~3-4000 cosmic ray events unambiguously detected by

LOPES CODALEMA Radio Prototypes@Auger AERA TREND ANITA Radio@Tunka

(and of course the historical experiments, partly re-analyzed: MSU, Yakutsk, e.g.)

→Now: do we understand the signals?

7

TREND :

The Tianshan Radio Experiment for Neutrino Detection

Jusing 21cm array in China Jirst events detected

Olivier Martineau, IHEP February 2011 D.Ardouin et al, Astropart.Phys.34:717-731,2011

ANITA : ANtarctic Impulsive Transient Antenna

Horn antennas 300MHz-1GHz
→ 16 EAS candidates (Energy ~10¹⁹eV)
→ No neutrino candidate

→2012 next (CR optimized) flight

A.Romero-Wolf, ARENA 2010, Nantes S.Hoover et al. - Phys.Rev.Lett.105:151101,2010.

LOPES

LOPES collaboration: -) KASCADE-Grande -) U Nijmegen, NL -) MPIfR Bonn, D -) Astron, NL

-) IPE, FZK, D

→ Development of a new detection technique!

Evolution of LOPES

Andreas Haungs

-100

0 W->E Direction 100

[m]

LOPES: Proof of principle

2. Radio data analysis

1. KASCADE measurement

3. Skymapping

4. Many events

LOPES collaboration, Nature 425 (2005) 313

12

June 2011, Roma Tre, Italia

LOPES 30 event example

-radio reconstruction inclusive calibration factors of antennas
→CC-beam value (per event)
→Field strength (per antenna)

$$cc[t] = + \sqrt{\left|\frac{1}{N_{Pairs}}\sum_{i=1}^{N-1}\sum_{j>i}^{N}s_{i}[t]s_{j}[t]\right|}$$

30 individual antennas

-1.9

(degree of correlation \rightarrow extract coherent pulse):

-1.8

-1.7

June 2011, Roma Tre, Italia

Field Strength [µV/m/MHz]

-10

Lateral distribution

W.D. Apel et al. (The LOPES Collaboration), Astroparticle Physics 2010

- Field strength of individual antennas
- Fit with exponential function $\epsilon(R) = \epsilon_0 \exp -(R/R_0)$
 - 80% exponential with $R_0 \sim 100-200$ m
 - 20% total flat events or flat at small distances

Lateral distribution Comparison of data with simulations

- Simulation of measured events
- REAS2 often too steep
- REAS3 fits well, explains also most flat events

REAS3: Huege, Ludwig, Astroparticle Physics 2010 LOPES data: F.Schröder, PhD thesis, Feb 2011

LOPES: Lightning vs. EAS

- Problem: how lightning are initated?
- One solution: by EAS
- Radio good oportunity to measure lightning development

LOPES coll, accepted Advance Space Research (2011)

16

June 2011, Roma Tre, Italia

Connection particle array – radio array:

Radio detection technique is still in developing phase hardware, software, analysis, emission mechanism(s?), ... → Calibration (understanding) radio emission Dependencies of radio signal

Understanding emission mechanism(s)

Capability of the radio detection technique? Sensitivity and resolution to primary energy? arrival direction? composition ?

EAS radio detection for CR (and neutrino) measurements: stand alone or hybrid technique?

June 2011. Roma Tre. Italia

Hybrid with particle arrays, not fluorescence technique (duty cycle).

Primary Energy

- Radio-Emission seems coherent !
- Energy sensitivity via electric field strength
- Radio signal (electric field) scales with primary energy:

ε_ν ~ **Ε**₀≈1

Power of electric field scales approximately quadratically with primary energy !

- Sensitivity and resolution

∆E/E ~ 20-25%

Particle array: 10-20% → is energy resolution really worse? Model dependence? Emission mechanism? Geometry of shower (polarization)?

Arrival Direction

- sensitivity via pulse arrival time and phase
- systematic studies of direction resolution: KASCADE vs. LOPES: offset (1.3±0.8)°
 → resolution better 1°
 (by beam forming; Better with increasing

field strength, but number of antennas?)

F.Schröder et al., NIM A 615 (2010) 277

Sensitivity and resolution

σ(direction) << 1°

Composition

- **Sensitivity and resolution** ??
- Particle array: unknown (large) uncertainty (FD better)
 - → by lateral sensitivity (pattern)seems possible
 - → by longitudinal sensitivity:
 - pulse shape wave front frequency spectrum

= Xmax (shower maximum) sensitivity needed!!

Andreas Haungs

 $\theta = 60^{\circ}$, 10^{18} to 10^{20} eV

700

800 900

300

Composition II

Cone parameter ρ , geometrical delay τ_{geo} , lateral distance to shower axis R

Conical wave front good approximation in data and simulations!

- wave front is conical and has composition sensitivity!
- model dependence?
- distance dependence?

- → X_{max} (shower maximum)
 sensitivity is given
- Resolution: in REAS3: 30g/cm² in LOPES: 200g/cm²

F.Schröder, PhD thesis, Feb 2011

Present R&D studies

Self-triggered radio events observed at the Pierre Auger Observatory

See AERA talk later (B.Fuchs)

- Optimizing Self
 Trigger Radio
 Detectors
- Antenna / Amplifier / Filter Design
- Electronics
- Data Communication
- Station layout

Gemmeke et al, IEEE (2010) Rierre Auger Collaboration, ICRC 2011

Next steps in R&D

- Horizontal sensitivity (for Neutrinos)
- Scalability of stations to hundreds of antennas
- Embedded radio detection in surface particle detectors

>80°: sensitivity for neutrinos

>70°: 35% of the total solid angle: larger rate for charged cosmic rays

Workpackage of ASPERA "AugerNext" innovtive R&D studies (second call) → Start funding in 2011

EAS Radio detection: GHz range

See next ICRC!!

• Signal might stem from molecular bremsstrahlung: = incoherent, unpolarised, isotropic emission

e.g. CROME

3 Setups using commercial satellite receivers triggered by KASCADE-Grande !

e.g. FDWave:

Replacing AugerFD PMTs by horn antennas (V.Verzi, Roma) e.g. AMY@Frascati:

850 MeV electrons (V.Verzi, Roma)

More: AMBER, MIDAS, EASIER, . .

➔ No EAS detection, yet

🔛 June 2011, Roma Tre, Italia

- as new CR detection technique estblished $E_{threshold} \approx 10^{17} eV$
- successful and sensitive to
 - primary energy $\varepsilon \sim E_0^{\gamma} (\gamma \approx 1) \Delta E/E \sim 20-25\%$
 - arrival direction beam forming resolution better 1°
 - composition LDF-slope; wave front $\triangle A/A$ still unknown
- still many question open to emission mechanism(s)

suitable for hybrid measurements ? yes!! As stand-alone technique? will see!!

Next: AERA@Pierre Auger Observatory / LOFAR / ANITA-CR optimization / TREND / IceCube surface Radio Array

