RICAP 2011 – Roma

25 May 2011

Review on High Energy Cosmic Rays

Giorgio Matthiae University and Sezione INFN of Roma Tor Vergata

Current status of all-particle flux

Two main experiments for the study of the high-energy region

-The Auger Observatory in the Southern hemisphere

- <u>Telescope Array</u> in the Northern hemisphere

Auger / TA hybrid detectors

Fluorescence Detector (FD)

- N₂ molecules (300-400 nm)
- Longitudinal development of the shower
- <u>Calorimetric measurement of the energy</u>
 - **Calibration of the energy scale**
- Only moonless nights
 - ~ <u>10% duty cycle !</u>

Surface Detector (SD)

- Front of shower at ground
- Direction and "energy" of the shower

AUGER Observatory

Completed April 2008

Malargüe 35⁰ S latitude

 \approx 1400 m height \approx 875 g/cm²

• Very flat region with low population density

• Good atmospheric conditions (clouds,

1600 Surface detectors ("water tanks") 1.5 km spacing

24 fluorescence telescopes, 6 in each of the 4 sites + 3 higher elevation

Fly's eye -> HiRes --> Telescope Array TA detector

(¹/₄ Auger)

Surface detector (SD)

- Plastic scintillator (a la AGASA)
- 507 SDs
- 1.2km spacing, 680km²
- Fluorescence detector (FD)
 - 3 stations (BR, LR, MD)
 - 38 telescopes (12+12+14) (a la HiRes)
- Location
 - Utah, USA
 - About 200km south to Salt Lake City
 - 39.3°N, 112.9°W
 - Altitude ~1400m

transfer HiRes telescopes

The largest detector in northern hemisphere

H. Sagawa @ UHECR2010

Surface Detector of Telescope Array

Emission spectrum

~ 300 – 450 nm

Fluorescence Yield

Number of photons per MeV deposited energy

Now known to better than $\pm 5 \%$

(F. Arqueros)

(b) Corrected Y_{337} values.

Energy Calibration Auger / TA

Reconstruction of a SD event

• Parameters determinated from fit: core position, S(1000)

S(1000) good energy estimator

Auger Energy Calibration (SD+FD)

Independent of model calculations

795 high quality hybrid events

Energy resolution 17 %

Auger : Uncertainy on FD energy scale

Source	$\Delta E_{FD}/E_{FD}(\%)$
Absolute Fluorescence Yield	14
FD absolute calibration	10
Atmospheric Attenuation Aerosol etc.	8
FD reconstruction method	10
Invisible energy	2
TOTAL SYSTEMATIC	~ 22
Now reduced to 12 – 15 % (ICR	C 2011)

Comparison of E_{SD} and E_{FD}

- Energy scale is determined experimentally by FD without referring to MC.
- Set SD energy scale to FD energy scale using wellreconstructed events detected by both detectors.
- 27% renormalization.
 - Systematic error 19%

(from systematic error of energy by hybrid analysis)

Energy Spectrum

Auger Fits power spectrum $E^{-\gamma}$

Confirmation of Greisen – Zatsepin – Kuz'min prediction: interaction with the CMB

- GZK cut from pion photoproduction
- Ankle from e ⁺e⁻ production (Berezinski and Grigorieva)

Features already observed by HiRes

TA SD Spectrum

TA SD energy is rescaled to FD energy.

2010/12/10

H. Sagawa @ UHECR2010

TA SD and HiRes Spectra

HiRes/ TA – Auger observe the GZK suppression

But : problem on the energy scale

HiRes integral spectrum

Berezinsky E_{1/2} Test

- $E_{\frac{1}{2}}$ is the energy where the integral spectrum falls below 1/2 × power-law extension.
- Berezinsky et al.: log₁₀*E*¹/_{1/2} = 19.72, for a wide range of spectral slopes.
- Use 2 Break Point Fit ٠ with Extension for the comparison.

Berezinsky, Grigorieva 1988* $Log_{10}^{HiRes, Dec} E_{1/2}^{2010} = 19.76$

Mass composition

< X_{max} > for different primaries (photons, protons and iron nuclei)

Model dependence !

Auger - Xmax QGSJET II

Provisional conclusions:

- Model dependence too large
- In the ankle region protons or mainly protons (ankle as effect of e+e-production)
- Above ~10¹⁹ eV, disagreement HiRes/TA vs. Auger. Indication mixed composition ?

Study to reduce systematic uncertainty going on.

Photon search

Limits on photon fraction

Expect photons from GZK: $p + \gamma \rightarrow p + \pi^0$

HP: Haverah Park A1,A2: AGASA Y: Yakutsk

Correlation extragalactic objects

SHOWER DIRECTION from surface array (Auger)

Véron &Véron-Cetty catalogue 442 AGN (292 in f.o.v.) z<0.018 (75 Mpc) 27 events E > 55 EeV 18 events correlate with AGN within 3.1⁰

<u>GZK Horizon – GZK sphere</u>:

maximum distance of the sources for protons arriving at the Earth with energy above a given value

Correlation with VCV AGN - Updated

At present HiRes – TA don't see a correlation (lower statistics, North vs. South)

The result is consistent with background. N tot

Auger - Study of correlations with respect to other catalogs of galaxies. Select galaxies within 200 Mpc (GZK sphere)

AGN from <u>Swift – BAT</u> catalog.
 All sky hard X-ray survey. (373 objects)

Procedure: the arrival direction of each event forms a pair with every object in the catalog. The separation angle is ψ . We calculate the number of pairs $N_p(\psi)$ with separation less than ψ .

Relative excess with respect to isotropic expectations of pairs having angular separation less than any given angle ψ :

 $N_p(\psi) / N_p(\psi)_{iso} - 1$

• Auger AGN from Swift – BAT catalog. (373 objects)

Auger. Events for E > 55 EeV superimposed on the Swift – BAT density map smoothed with angular scale of 5 degrees Distance less than 200 Mpc.

Clear excess in the region of Centaurus

A sizeable fraction of events come from the region of Cen A (AGN at ~ 4 Mpc)

Within 18^o from Cen A we have 13 events (20% of the total) while we expect 3.2 for isotropic distribution.

Most likely these particles don't come from Cen A but from Centaurus cluster, same direction but much further away, 40-50 Mpc, strong emitters of HI line. (Ghisellini et al. 2008)

Conclusions

- <u>Shape of the energy spectrum</u> well understood.
 <u>Existence of GZK cut-off well established</u> (Energy calibration to be improved)
- Mass composition requires better understanding of systematic effects (difficult measurement)
- Indication / evidence for <u>correlation with extragalactic</u> <u>objects</u> – Centaurus region <u>transition from isotropy to anisotropy at the GZK</u>

New developments

- Infill dense array, $\frac{1}{2}$ standard spacing (~ 50 km²)
- Three telescopes with higher elevation angle (30 60 degree)Reduction of minimum explored energy $10^{18} \rightarrow 10^{17} \text{ eV}$

<u>10¹⁷ eV</u> same energy as LHC.

Data on hadronic physics at LHC –> tuning of the simulation programs. More reliable predictions on Xmax at higher energies

Radio R&D at Auger

Expect signal in the region about 10 – 100 MHz

R&D array of $\sim 20 \text{ km}^2$

Few events in coincidence with FD, SD already observed !

PHYSICAL REVIEW D 78, 032007 (2008)

Observations of microwave continuum emission from air shower plasmas

P. W. Gorham,¹ N. G. Lehtinen,^{1,*} G. S. Varner,¹ J. J. Beatty,² A. Connolly,³ P. Chen,⁴ M. E. Conde,⁵ W. Gai,⁵ C. Hast,⁴ C. L. Hebert,^{1,+} C. Miki,¹ R. Konecny,⁵ J. Kowalski,¹ J. Ng,⁴ J. G. Power,⁵ K. Reil,⁴ L. Ruckman,¹ D. Saltzberg,³ B. T. Stokes,^{1,‡} and D. Walz⁴

AMY: AIR MICROWAVE YIELD

Confirm and **measure** precisely the **absolute microwave yield** and its **frequency spectrum** in the range **between 1 and 25 GHz** INFN Roma Tor Vergata Lecce - Aquila Czech Republic Sant. de Compostela

Prototypes to be installed at the Auger Observatory

4.5 m dish

Current TA and Next TA

都市で学び 夢を

Next TA and other detectors

JEM-EUSO Observational Principle

JEM-EUSO is a new type of observatory on board the International Space Station (ISS), which observes transient luminous phenomena occurring in the earth's atmosphere.

The telescope has a super wide field-ofview(60°) and a large diameter(2.5m).

JEM-EUSO mission will initiate particle astronomy at ~10²⁰eV.

JEM-EUSO telescope observes fluorescence and Cherenkov photons generated by air showers created by extreme energetic cosmic rays