

TELESCOPE ARRAY: LATEST RESULTS

P. Tinyakov^{1,2} for the Telescope Array Collaboration

¹Université Libre de Bruxelles, Bruxelles, Belgium

²Institute for Nuclear Research, Moscow, Russia

ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Outline

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Conclusions

ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Conclusions

・ロト (四) (三) (三) (三) (三) (日)

UHECR ground-based experiments

The Telescope Array collaboration

T. Abu-Zayyad¹, R. Aida², M. Allen¹, R. Azuma³, E. Barcikowski¹, J.W. Belz¹, T. Benno⁴, D.R. Bergman⁵, S.A. Blake¹, O. Brusova¹, R. Cady¹, B.G. Cheon⁶, J. Chiba⁷, M. Chikawa⁴, E. J. Cho⁶, L.S. Cho⁸, W.R. Cho⁸, F. Cohen⁹, K. Doura⁴, C. Ebeling¹, H. Fujii¹⁰, T. Fujii¹¹, T. Fukuda³, M. Fukushima⁶ ^{- 22}, D. Gorbunov¹², W. Hanlon¹, K. Hayashi³, Y. Hayashi¹¹, N. Hayashida⁹, K. Divina⁴, C. Ebeling¹, H. Fujii¹⁰, T. Fujii¹¹, T. Fukuda³, M. Fukushima⁶ ^{- 22}, D. Gorbunov¹², W. Hanlon¹, K. Hayashi³, Y. Hayashi¹¹, N. Hayashida⁹, K. Bibino¹³, D. Ixanov⁵, S. Iwamoto², C.C.H. Jui¹, K. Honda², G. Hughes⁵, T. Iguchi³, D. Ikeda⁹, K. Kua¹, S. J.J. Innemee⁴, N. Inoue¹⁴, T. Ishii¹, R. Ishimori³, D. Ixanov⁵, S. Iwamoto², C.C.H. Jui¹, K. Kadota¹⁵, F. Kakimoto³, O. Kalashev¹², T. Kanbe², H. Kang¹⁶, K. Kasahara¹⁷, H. Kawai¹⁸, S. Kawakami¹¹, S. Kawana¹⁴, E. Kido⁹, B.G. Kim¹⁹, H.B. Kim⁶, J.H. Kim⁶, J.H. Kim²⁰, A. Kitsugi⁹, K. Kobayashi⁷, H. Koers²¹, Y. Kondo⁹, V. Kuzmin¹², Y.J. Kwon⁸, J.H. Lin¹⁶, S.I. Lin¹⁹, S. Machida³, K. Martens²², J. Martineau¹, T. Matsuda¹⁰, T. Matsuyama¹¹, J.N. Matthews¹, M. Minamino¹¹, K. Miyata⁷, H. Miyauchi¹¹, Y. Murano³, T. Nakamura²³, S.W. Nam¹⁹, T. Nonaka⁸, S. Ogio¹¹, M. Ohnishi⁹, H. Ohoka⁹, T. Okuda¹¹, A. Oshima¹¹, S. Ozawa¹¹, I.H. Park¹⁹, D. Rodriguez¹, S.Y. Roh²⁰, G. Rubtsov¹², D. Ryu²⁰, H. Sagawa⁹, N. Sakura⁹, L.M. Scott⁵, P.D. Shah¹, T. Shibata⁹, H. Shimodaira⁹, B.K. Shin⁶, J.D. Smith¹, P. Sokolsky¹, T.J. Sonley¹, R.W. Springer¹, B. T. Stokes⁵, S.R. Stratton⁵, S. Suzuki¹⁰, Y. Takahashi⁹, M. Takeda⁹, A. Taketa⁹, M. Takita⁹, Y. Tameda³, H. Tanaka¹¹, K. Tanaka²⁴, M. Tanaka¹⁰, J.R. Thomas¹, S.B. Thomas¹, T.A. Stroman¹, G.B. Thomson⁵, P. Tinyakov^{12² - 21}, I. Tachev¹², H. Tokuno⁹, T. Tomida², R. Torii⁵, S. Troitsky¹², Y. Tsunesada³, Y. Tsu

1University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah, USA University of Tamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Sofu, Yamanashi, Japan Rickow Institute of Technology, Meguro, Tokyo, Japan Kkuki University, Fiscataway, USA Ghanyang University, Seodange-gu, Seoul, Korea Hanyang University, Seodange-gu, Seoul, Korea Stotsei University, Seodaamun-gu, Seoul, Korea Shistitue for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan Ilozaka City University, Sandaka, Osaka, Osaka, Japan Ulozaka City University, Seodaemun-gu, Seoul, Korea Shistitue for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan Ulozaka City University, Seodaema, Osaka, Osaka, Japan Ulozaka City University, Sanda, Osaka, Osaka, Japan Ulozaka City University, Seodaema, Cithe Russian Academy of Sciences, Moscow, Russia	14Saitama University, Saitama, Saitama, Japan 15Tokyo City University, Seatgaya-ku, Tokyo, Japan 16Pusan National University, Geumelong-gu, Busan, Korea 17Waseda University, Ghaba, Geumelong-gu, Busan, Korea 18Chiba University, Chiba, Japan 18Ewha Womaru University, Beadaamuni-gu, Seoul, Korea 20Chungnam National University, Fuseong-gu, Daejeon, Korea 20Chungram National University, Puseong-gu, Daejeon, Korea 20Chungram National University, Puseong-gu, Daejeon, Korea 20Chungram National University, Puseong-gu, Daejeon, Korea 20University of Tokyo, Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba, Japan 21Korokinu City, University, Haroshima, Haroshima, Japan 21National Institute of Radiological Science, Chiba, Chiba, Japan
13Kanagawa University, Yokohama, Kanagawa, Japan	26Ehime University, Matsuyama, Ehime, Japan

ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Conclusions

TELESCOPE ARRAY DETECTOR

・ロ・・母・・ヨ・ ヨー うへぐ

TELESCOPE ARRAY HYBRID DETECTOR

- ► 507 scintillator detectors covering 680 km²
- S fluorescence sites, 38 telescopes
- Surface detector fully operational from March 2008
- $\blacktriangleright\,$ SD relative size: TA \sim 9 $\times\,$ AGASA $\sim\,$ PAO/4 $\,$

TELESCOPE ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector Spectrum Chemical

composition Anisotropies Photon limit

TA surface detectors

TELESCOPE ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector Spectrum Chemical composition Anisotropies Photon limit Conclusions

- > Deployed with the spacing \sim 1.2 km
- Powered by solar panels. Connected by radio.

TA Fluorescence Detectors

Hybrid event example

Triple FD Event (2008-10-26)

TELESCOPE ARRAY: LATEST RESULTS

Telescope Array detector Spectrum Chemical composition Anisotropies Photon limit

ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Conclusions

SPECTRUM

・ロット 中マ ト エット ト 日 うくの

TA spectrum

TA measures spectrum by three techniques:

- Middle Drum fluorescence detector (FD-mono)
- Surface detector (SD)
- Hybrid (SD+FD)

P. Tinyakov for the Telescope Array Collaboration

LATEST RESULTS

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Conclusions

・ロト (四) (三) (三) (三) (三) (日)

FD-mono spectrum

ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Surface detector spectrum

Dataset:

- Geometrical cuts:
 - θ < 45°
 - core inside the array, distance to border > 1200 m
- Cuts on reconstruction quality:
 - > number of detectors hit \geq 4
 - ► $\chi^2/d.o.f < 4.0$
 - \succ pointing direction resolution $<5^\circ$
 - First fractional S_{800} uncertainty < 0.25
- 1.75 years, 6264 events after cuts

P. Tinyakov for the Telescope Array Collaboration

LATEST RESULTS

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

TA surface detector spectrum

LATEST RESULTS P. Tinyakov or the Telescop

Collaboration

Telescope Array detector

Spectrum

Chemical composition Anisotropies Photon limit Conclusions

SD, FD-mono and hybrid spectra

Comparison with other experiments

TELESCOPE ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Conclusions

CHEMICAL COMPOSITION

Telescope Array stereo result

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition Anisotropies Photon limit

Conclusions

TA data favor protons

[Y. Tameda, UHECR-2010, Nagoya]

TA X_{max} distributions (I)

Xmax Distribution (QGSJET01)

TELESCOPE ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition Anisotropies Photon limit Conclusions

・ロト・日下・ ヨー・ うへの

TA X_{max} distributions (II)

Xmax Distribution (QGSJET01)

ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition Anisotropies Photon limit Conclusions

- ロト 4 昼 ト 4 亘 ト 4 国 - りへの

TELESCOPE ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Conclusions

ANISOTROPIES

・ロト・日ト・ヨト・ヨー シック

Sky distribution, E > 10 EeV

Equatorial coordinates, 655 events

TELESCOPE ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Sky distribution, E > 40 EeV

Equatorial coordinates, 35 events

TELESCOPE ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Conclusions

(日) 4 酉 > 4 回 > 4 回 > 回 のへで

Sky distribution, E > 57 EeV

Equatorial coordinates, 15 events

ARRAY: LATEST RESULTS

Search for clustering at small scales E > 10 EeV

no excess over background

TELESCOPE ARRAY:

LATEST RESULTS

Telescope Array detector

Spectrum Chemical composition

Anisotropies Photon limit

Search for clustering at small scales E > 40 EeV

⇒ no excess over background

TELESCOPE

ARRAY:

LATEST

RESULTS

Telescope Array detector

Spectrum Chemical composition

Anisotropies Photon limit Conclusions

Test of correlations with AGN

- 472 AGN from 2006 Veron catalog with z < 0.018 (D < 75 Mpc)
- separation angle 3.1°

ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies Photon limit

Test of correlations with AGN

Currently: observed 6, background 3.6, $p = 16\% \implies$ compatible with background

| □ ▶ ∢ ፼ ▶ ∢ 厘 ▶ ∢ 厘 → ∽ � ♡ � ♡

Correlation with LSS

- UHECR flux at high energies is expected to be anisotropic because matter distribution is not uniform at distances ~ 100 Mpc
- The matter distribution can be modeled out to ~ 250 Mpc from the XSCz catalog (*T. Jarrett, in preparation*) containing over 700 000 galaxies with spectroscopic redshifts
- From the matter distribution the UHECR flux map may be calculated and compared to observation
- This involves a single parameter the smearing angle θ representing deflections in magnetic fields and finite angular resolution

TELESCOPE ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Correlations with LSS E > 40 EeV

Galactic coordinates

TELESCOPE ARRAY: LATEST

P. Tinyakov for the Telescope Array Collaboration

RESULTS

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Conclusions

(ロト 4 昂 ト 4 三 ト 4 日) りへの

Correlations with LSS E > 57 EeV

Galactic coordinates

P. Tinyakov for the Telescope Array Collaboration

RESULTS

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Conclusions

(□ > < 昼 > < 亘 > < 亘 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results of the statistical tests

TELESCOPE ARRAY: LATEST RESULTS **Telescope Array** detector Spectrum Chemical composition Anisotropies Photon limit Conclusions

ロト 4 母 ト 4 注 ト 4 注 ト りへで

Results of the statistical tests

Spectrum

Chemical composition

Anisotropies

Photon limit

LATEST RESULTS P. Tinyakov

for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Conclusions

PHOTON LIMIT

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Photon flux limits

CONCLUSIONS

- ► TA observes the cut-off in the spectrum, significance currently is $\sim 3.5\sigma$
- TA data favor light composition at high energies (like HiRes, unlike Auger)
- Almost fully consistent with isotropy (except perhaps at E > 57 EeV)
 - no significant small-scale clustering
 - no significant correlation with AGN
 - no significant correlation with LSS

P. Tinyakov for the Telescope Array Collaboration

RESULTS

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

BACKUP SLIDES

ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

TA surface detector in detail

TELESCOPE ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector Spectrum Chemical composition Anisotropies Photon limit Conclusions

(日) (四) (山) (山) (山) (山) (山)

コト 4 昼 ト 4 直 ト 4 直 ト 三 三 - ののの

SD event example

□ ▶ < 団 ▶ < 三 ▶ < 三 ▶ ○ Q(</p>

FD event example

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Energy scale

- SD energy: CORSIKA QGSJET-II full MC
- FD energy: MD mono, BRM, LR hybrid
- Result: $E = E_{SD}/1.27$

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

Statistical significance of GZK cut-off

- Assume no GZK cutoff and extend the broken power law fit beyond the break
- Apply this extended flux formula to the actual TASD exposure, find the number of expected events and compare it to the number of events observed in log₁₀E bins after 10^{19.8}eV bin:

$$-$$
 N_{EXPECT} = 18.4

$$- N_{OBSERVE} = 5$$

$$PROB = \sum_{i=0}^{1} Poisson(\mu = 18.4; i) = 2.41 \times 10^{-4}$$
(3.5g)

TELESCOPE ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector Spectrum Chemical composition

Anisotropies

Photon limit

Conclusions

G.Thomson, ICHEP'10, Paris

Auger & HiRES XMAX results

Auger: Phys.Rev.Lett.104.091101

HiRES: Phys.Rev.Lett.104.161101

ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit

C: Centaurus supercluster (60 Mpc); Ca: Canes I group (4 Mpc) and Canes II group (9 Mpc); Co: Coma cluster (90 Mpc); E: Eridanus cluster (30 Mpc); F: Fornax cluster (20 Mpc); He: Hercules superclusters (140 Mpc); Hy: Hydra supercluster (50 Mpc); L: Leo supercluster (130 Mpc), Leo I group (10 Mpc), and Leo II group (20 Mpc); M81: M81 group (4 Mpc); M101: M101 group (8 Mpc); P: Pegasus cluster (60 Mpc); PI: Pavo-Indus supercluster (70 Mpc); PC: Pisces- Cetus supercluster (250 Mpc); PP: Perseus-Pisces supercluster (70 Mpc); S: Shapley supercluster (200 Mpc); UM: Ursa Major supercluster (240 Mpc), Ursa Major North group (20 Mpc), and Ursa Major South group (20 Mpc); V: Virgo cluster (20 Mpc); VII: Virgo II group (20 Mpc); VIII: Virgo III group (20 Mpc).

P. Tinyakov for the Telescope Array Collaboration

RESULTS

Telescope Array detector Spectrum Chemical composition Anisotropies Photon limit Conclusions

The statistical test ("flux sampling")

- Events following the model would produce uniform distribution over the bands
- No binning is needed (on the picture it is for illustration only): two distributions may be compared by the KS test

TELESCOPE ARRAY: LATEST RESULTS

P. Tinyakov for the Telescope Array Collaboration

Telescope Array detector

Spectrum

Chemical composition

Anisotropies

Photon limit