# Fermi gamma-ray `bubbles' from stochastic acceleration of electrons

Philipp Mertsch

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

RICAP 11, Roma 26 May 2011





#### <u>Bubble feature robust</u>

#### Fermi-LAT skymaps



Su, Slatyer, Finkbeiner, ApJ 724 (2010) 1044

#### Bubble feature robust

#### Subtraction of Fermi-LAT model



Su, Slatyer, Finkbeiner, ApJ **724** (2010) 1044

### Bubble feature robust

#### Subtraction of simple $\pi^0$ model (dust map) and IC model



Su, Slatyer, Finkbeiner, ApJ 724 (2010) 1044

# Subtraction of low-energy maps

#### Subtraction of low-energy $\gamma$ –ray maps maps



# Bubbles have sharp edges



averaged 1-2 and 2-5 GeV maps

Su, Slatyer, Finkbeiner, ApJ 724 (2010) 1044

# Bubbles have sharp edges



# Bubbles have hard spectrum



## Bubbles have hard spectrum



# Hadronic model

Aharonian & Crocker, PRL, **106** (2011) 101102



increased star formation rate close to GC acceleration of CR protons and nuclei in SNRs wind convects CRs away from disk

gamma-rays by  $\pi^0$  on thermal gas

saturation, i.e.  $t_{\rm acc} \ll t_{\rm pp} < t_{\rm esc} \rightarrow \text{constant volume emissivity}$ 

# Leptonic model

Cheng et al., ApJL **731** (2011) L17







disruption of stars by central black hole hundreds of concentric shock fronts shocks constricted in galactic disk → bubble shape

electrons accelerated to E<sup>-2</sup> spectrum by diffusive shock acceleration

gamma-rays by inverse Compton scattering on radiation fields

# Shock(s) and morphology



Even if volume emissivity is homogeneous, in projection this would give a bump-like profile



only evidence for shock at bubble edges (from ROSAT)

turbulence produced at shock and convected downstream

2nd order Fermi acceleration by large-scale, fast-mode turbulence

### Timescales

Fokker-Planck equation:

$$\frac{\partial n}{\partial t} - \frac{\partial}{\partial p} \left( p^2 D_{pp} \frac{\partial}{\partial p} \frac{n}{p^2} \right) - \frac{n}{t_{\rm esc}} + \frac{\partial}{\partial p} \left( \frac{\mathrm{d}p}{\mathrm{d}t} n \right) = 0$$



steady state solution because of hierarchy of timescales:  $t_{
m acc}, t_{
m esc} \ll t_{
m life}$ 

### Steady state spectrum



 $t_{
m acc}\,$  and  $t_{
m esc}\,$  depend on distance from shock

#### <u>Timescales</u>



#### Timescales





#### Electron spectrum



total energy in electrons above 100 MeV: ~  $10^{51}$  erg

over 5 orders of magnitude smaller than energy of protons in hadronic model

Mertsch & Sarkar, arXiv:1104.3585

4

# Bubble spectrum



# Bubble profile



# Other messengers

leptonic origin of gamma-rays  $\rightarrow$  no neutrinos

"WMAP haze" can only be matched with unrealistically high B field



BUT: Is the haze real? Mertsch & Sarkar JCAP 10 (2010) 019

#### Summary



evidence for Fermi bubbles: robustness, morphology, spectrum



other models explain gamma-ray emission but don't match morphology



2<sup>nd</sup> order Fermi acceleration explains spectrum and sharp edges; moderate energy requirements

#### Fermi-LAT confirms bubbles

Nov. 09, 2010

**RELEASE:** 10-295

NASA'S FERMI TELESCOPE DISCOVERS GIANT STRUCTURE IN OUR GALAXY

WASHINGTON -- NASA's Fermi Gamma-ray Space Telescope has unveiled a previously unseen structure centered in the Milky Way. The feature spans 50,000 light-years and <u>new be the remnant of an eruption from</u>

much more energetic than the gamma-ray fog seen elsewhere in the Milky Way. The bubbles also appear to have well-defined edges. The structure's shape and emissions suggest it was formed as a result of

http://www.nasa.gov/home/hqnews/2010/nov/HQ\_10-295\_FERMI.html

### Fermi-LAT confirms bubbles



http://www.nasa.gov/images/content/498886main\_DF4\_bubbles\_graphs.jpg

# Bubble spectrum

