# **CALorimetric Electron Telescope** (CALET)

P. S. Marrocchesi for the CALET Collaboration – RICAP11 – 2011 May 26

• Instrument:

High Energy Electron and Gamma-Ray Telescope

- Carrier: HTV: H-IIA Transfer Vehicle
- Attach Point on the JEM-EF: #9 for heavy (< 2000 kg) payloads
- Nominal Orbit: 407 km, 51.6° inclination
- Launch plan: FY 2013
- Life Time:  $\geq 5$  years



Pisa Siena Roma Tor Vergata



1 GeV ~ 20 TeV for electrons 20 MeV ~ TeV for gamma-rays Weight: 500 kg GF (fiducial volume): ~ 0.12 m<sup>2</sup>sr Power Consumption: 640 W Data Rate: 300 kbps

# Launching Procedure of CALET

### CALET



### H2-B Transfer Vehicle (HTV)



Launching by H-IIB Rocket

## Launch of the H-IIB Launch Vehicle Test Flight

**C** JAXA

- Launched on Sep.11, 2009 at Yoshinobu Launch Complex at the Tanegashima Space Center in Japan
- > Docked successfully to ISS on Sep. 18, 2009.
- > HTV-2 was also launched in Jan, 2011







# **CALET** Overview

### Observation

- Electrons : 1 GeV 10 TeV
- Gamma-rays : 10 GeV-10 TeV (GRB > 1 GeV)
  - + Gamma-ray Bursts : 7 keV-20 MeV
- Protons, Heavy Nuclei: several 10 GeV- 1000 TeV (per particle)
- Solar Particles and Modulated Particles in Solar System: 1 GeV-10 GeV (Electrons)

### **Instrument**

#### High Energy Electron and Gamma-Ray Telescope:

- CHarge Detector (CHD) (Charge Measurement in Z=1-40)
- Total Absorption Calorimeter (TASC) (Energy Measurement, Particle ID) PWO 20mm × 20mm × 320mm Total Depth of PWO: 27  $X_0$  (24cm), 1.35  $\lambda_I$

IMC





## Shower Images

### Gamma-ray 10GeV

### Electron 1TeV

### p 10TeV



# CALET System Design

The CALET mission instrument satisfies the requirements as a standard payload in size, weight, power, telemetry etc. for launching by HTV and for observation at JEM/EF.



## Origin, Acceleration and Propagation of Galactic Cosmic Rays



## Open questions:

- is there a SN acceleration limit?
- does CR elemental composition change with energy?
- what is the energy dependence of the confinment time of CR in the Galaxy?

## Cosmic-ray measurements with CALET in 5 yrs

### Energy reach

- ➢ Proton spectrum to ≈ 900 TeV
- → He spectrum to  $\approx 400$  TeV/n
- > Spectra of C,O,Ne,Mg,Si to  $\approx$  20 TeV/n
- > B/C ratio to ≈ 4 6 TeV/n
- > Fe spectrum to  $\approx$  10 TeV/n
- > Trans-Fe elements ( $26 < Z \le 40$ )

### **Measurement**

Search of proton knee above 100 TeV Different slopes of He and proton spectra Power law or spectrum curvature? Energy dependence of escape length Fe abundance and sub-Fe/Fe ratio vs. E Composition and energy dependence



## The electron spectrum above 1 TeV

> CALET will perform Anisotropy measurements to validate possible evidence of nearby source(s)



## **CALET** Performance for Electron Observation



## Rejection of background protons with 2 imaging calorimeters



## Residual Proton Background

CALET

#### • Proton differential spectrum as: E<sup>-2.70</sup> • Electron broken power law: E<sup>-3.9</sup> as measured by HESS above 1 TeV $10^{7}$ Nevt **10<sup>6</sup>** protons/bin 10<sup>5</sup> electrons/bin **10<sup>4</sup>** $10^{3}$ p/e $10^{2}$ p<sub>int</sub>(folded) takes into account: 10 e non-compensating e/h ~ 2.5 1 proton resolution $\sim 40\%$ **10**<sup>-1</sup> (at 1 TeV) % residual p background @ 70% electron efficiency $10^{-2}$ **Total Rejection Power** (improved cuts in IMC+TASC): $10^{-3}$ $2 \times 10^3$ $3 \times 10^3$ $2 \times 10^2$ $3 \times 10^2$ $10^{3}$ ~ 10<sup>5</sup> @ 1 TeV (~1 % residual protons) GeV @ 70 % electron efficiency background: ~1% @ 1 TeV ~8% @ 4 TeV

## Proton and He



#### CALET energy reach in 5 years for p, He

| Nucleus | 10 events with E (TeV/n) > | 5 events with E (TeV/n) > |
|---------|----------------------------|---------------------------|
| н       | 586                        | 893                       |
| Не      | 265                        | 416                       |

- Competitors above 10 TeV/n: CREAM (neither PAMELA nor AMS-02 can cover this region)

# Multi-TeV region

- Proton and He slopes are different?
- Single power-law or curvature
- Is there a proton cutoff below 1 PeV?

### **Requirements for calorimetry:**

- proton interaction requires > 0.5  $\lambda_{INT}$
- energy measurement at 100 TeV scale requires containment of the e.m. core of the shower (as in CREAM ) i.e.: > 20  $X_0$

|        | $\lambda_{INT}$ | X <sub>0</sub><br>(normal incidence) |
|--------|-----------------|--------------------------------------|
| CREAM  | 0.5 + 0.7       | 20                                   |
| CALET  | 1,5             | 30                                   |
| AMS-02 | 0.5             | 17                                   |



Competitors above 4 TeV/n: CREAM, TRACER
below : AMS-02, PAMELA

# Secondary/Primary Nuclei Ratio



Secondary/primary nuclei ratio in CR is declining for E > 1 GeV/n, not rising !

The measured secondary-to-primary ratios, as a function of E/nucleon, are incompatible with an energy independent  $\tau_{esc}$ 

At high energy ( E > 100 GeV/n ) the S/P ratios measure the **energy dependence of the escape length**:

$$\frac{N_{\rm s}}{N_{\rm P}}(E) \cong \mathbb{P}_{P \to S} \frac{\tau_{\rm esc}(E)}{\tau_{\rm int}} \to E^{-\delta}$$



## Boron to Carbon ratio with CALET

Energy reach ( with 5 y x 0.12 m<sup>2</sup>sr): about 3 TeV/n

The irreducible background due to the **atmospheric overburden** at flight altitude sets a **limit to** the highest energy points of the **Boron-to-Carbon ratio** obtainable with **measurements on balloons**.

**Experiments in space are free from this limitation** and CALET is expected to measure the B/C ratio up to several TeV/n



- Competitors above 500 GeV/n: CREAM, TRACER, AMS-02

## GSI beam test 2010 at 1.3 GeV/amu: CHD Charge Resolution



## Trans-Fe ( $Z \leq 40$ ) elements

Dedicated CHD trigger



(large trigger acceptance of about 0.33 m<sup>2</sup>sr)

- statistics ≅ 8 x TIGER
- ≅ 60 days of Super-TIGER
- cleaner measurements (smaller corrections for hadronic interactions



### Comparison with Existing Data CALET expected in 5 y



### Tiger balloon experiment



## **Identification of SUSY Dark Matter:**

CALET has a better energy resolution than FERMI above 10 GeV, Therefore it can provide a HIGH RESOLUTION measurement of the line-shape of possible signals that FERMI might discover.

#### Example:

- 690 GeV neutralino annihilating to γγ
- Clumpy halo as realized in N-body simulation of Moore et al. (ApJL 1999)
- Simulated Signal in CALET for 3 years

## $m_{\chi} = 690 \text{GeV}$

$$N_{\gamma}\sigma v = 1.5 imes 10^{-28} {
m cm}^3 {
m s}^{-1}$$

## **Gamma-ray Line shape**



#### Energy Resolution ~1.2%



## **CALET - International Collaboration Team**

PI: Prof. Shoji Torii (Waseda University – Tokio)

Waseda University: S. Torii, K.Kasahara, S.Ozawa, H.Murakami, N. Hasebe, J.Kataoka, Y.Nakagawa, T.Kotani, JAXA/ISAS: M. Takayanagi, H. Tomida, S. Ueno, J. Nishimura<sup>\*)</sup>, Y. Saito, H. Fuke, K. Ebisawa, M.Hareyama JAXA/SEUC : Y.Shimizu Kanagawa University: T. Tamura, N. Tateyama, K. Hibino, S.Okuno, T.Yuda A. Yoshida, K. Yamaoka Aoyama Gakuin University: Shibaura Institute of Technology: K. Yoshida , A.Kubota, E.Kamioka T. Terasawa, M. Takita ICRR, University of Tokyo: Y.Katayose, M.Shibata Yokohama National University: Hirosaki University: S. Kuramata, M. Ichimura R.Kataoka, Y. Tunesada Tokyo Technology Inst.: National Inst. of Radiological Sciences: Y. Uchihori, H. Kitamura Kanagawa University of Human Services: Y.Komori KEK: K.Ioka, N.Kawanaka Shinshu University: K.Munakata Saitama University: K.Mizutani Nihon University: A. Shiomi Ritsumeikan University: M.Mori



NASA/GSFC: J.W.Mitchell, T.Hams, A. A.Moissev, J.F.Krizmanic, M.Sasaki Louisiana State University: M. L. Cherry, T. G. Guzik, J. B. Isbert, J. P. Wefel Washington University-St Louis: W. R. Binns, J. Buckley, M. H. Israel, H. S. Krawczynski, B. Rauch University of Denver: J.F.Ormes



University of Siena: M.G.Bagliesi, G.Bigongiari, S.Bonechi, R.Cecchi, M.Y.Kim, P.Maestro, P.S. Marrocchesi, V.Millucci University of Florence and IFAC (CNR): O. Adriani, S.Bottai, G.Castellini, P.Papini, S. Ricciarini, P.Spillantini, E.Vannuccini University of Pisa: C.Avanzini, A.Basti, G.Collazuol, T.Lomtadze, F.Morsani University of Rome Tor Vergata: C.De Santis, L.Marcelli, F.Palma, R. Sparvoli

カ Advisor

# Vibration Test of IMC BBM of IMC



SciFi Belt Glued on Substrate





### PMT and SciFi Connection



## BBM of TASC for Vibration Test

