3rd Roma International Conference on Astroparticle Physics

Large scale anisotropy studies with the Pierre Auger Observatory

Raffaella Bonino* for the Pierre Auger Collaboration *IFSI-INAF & INFN, Torino

Ultra High Energy Cosmic Rays

Particles with E ~ 10²⁰ eV exist and have been detected
▶ what are they and where do they come from?

Complementary studies:

- Energy spectrum
- Mass composition
- Arrival directions distribution

→ <u>LARGE SCALE:</u>

transition from galactic to extra-galactic origin = change in the large scale angular distribution because of different mechanisms of propagation

→ <u>SMALL SCALE:</u>

at ultra high E cosmic rays are only slightly deflected by magnetic fields \rightarrow direct way to search for **UHECR sources**

If sources are nearby and not uniformly distributed, an anisotropic arrival directions distribution is expected ("clustering")

27/05/2011

RICAP 2011

Transition galactic-extragal. origin

- source spectrum $\propto E^{-(2.2-2.3)}$, (2nd knee model E-(2.6-2.7))
- At $\sim 10^{18}$ eV galactic (mixed)

 10^{2} HiRes I HiRes II o

Ankle model [Linsley 1963]

RICAP 2011

LS anisotropy studies at PAO [Pierre Auger Coll., Astropart. Phys. 34 (2011) 627]

At energies $\sim 10^{18}$ eV, the aims of this search are:

- study the evolution of the galactic anisotropy and possibly identify the energy of transition from galactic to extra-gal. origin of UHECRs
 - ✓ if galactic: %-level modulation (amplitude depends on assumed gal. magnetic field, charges of particles, distribution of sources, ...)
 - ✓ if extra-gal.: no structure except for a CMB-dipole (~ 0.6 %)
 at higher energies: GZK cut-off → sources → anisotropy
- test the excess of 4% (4 s.d.) reported by AGASA in the 1-2 EeV energy range (even if in a different hemisphere)

Data collected by the **Pierre Auger Observatory** allow us to perform large scale analyses with a **sensitivity** at the **%-level** at **EeV energies**

27/05/2011

RICAP 2011

Pierre Auger Surface Detector

11/06/2010

SD angular resolution

Arrival direction determined from the delays among the hit tanks \rightarrow fit to the arrival times of the shower front at the SD

In the lower energy range: **ang. res.** < 2° → sufficient to perform searches for large scale patterns in arrival directions

Experimental effects

✓ A *genuine dipolar anisotropy* in the R.A. distribution of the events induces a modulation in the distribution of t_{arr} of events with T = 1 sidereal day

✓ A dipolar modulation of *experimental origin* with T= 1 solar day may induce a *spurious dipolar anisotropy* in the R.A. distribution

<u>Difficulties</u>: control of the sky exposure (with the corresponding accuracy)

- increase of experiment dimensions \rightarrow deployment of tanks over the array
- instabilities and dead times of the apparatus
- atmospheric and instrumental effects

Rayleigh analysis weighted by exposure [Mollerach & Roulet, JCAP 0508 (2005) 004]

- Classical Rayleigh formalism slightly modified to account for non-uniform exposure
- Measure the residual modulation after correcting for:
 - ✓ non-uniform acceptance in Right Ascension: weight each event by the inverse of the R.A. dependent exposure ω_i

$$a = \frac{2}{\Omega} \sum_{i=1}^{N} \omega_i \cos \alpha_i \qquad b = \frac{2}{\Omega} \sum_{i=1}^{N} \omega_i \sin \alpha_i$$
$$r = \sqrt{a^2 + b^2} \qquad \phi = \arctan \frac{b}{a} \qquad P = \exp(-r^2 \Omega/4)$$

✓ weather effects: correct the energy assignment for weather effects

✗ below 1 EeV w.e. affect *also* the detection efficiency
 → this method can be **reliably applied only above 1 EeV**

27/05/2011

RICAP 2011

- Instantaneous exposure for E and W events is the same, *i.e.* both sectors are equally affected by detector instabilities and weather conditions
- Standard harmonic analysis on the differences E-W
- The difference between counts from the E and the W sectors allows us to remove direction-independent phenomena (of experimental origin):
 - ✓ no correction is needed
 - **\times** reduced sensitivity \rightarrow higher statistics required (4 times more events)

27/05/2011

RICAP 2011

resulting from fluctuations of isotropic distrib. (*dashed lines*) \rightarrow no evidence of anisotropy

- ✓ Phases: smooth transition at 1 EeV from 270° (compatible with R.A._{GC}) to $\sim 100^{\circ} \rightarrow$ intriguing
- **Real transition?** 1.8 times the present statistics is needed to confirm it at 99% c.l.

Results: energy thresholds

In this analysis:

- × bins are strongly correlated
- ✓ useful to optimize the detection of an eventual genuine signal spread over a large energy range

→No evidence of significant anisotropy

Check of corrections

Fourier time analysis: designed to disentangle any sidereal modulation from the solar and the anti-sidereal ones, without the knowledge of the exposure *[Billoir & Letessier-Selvon, Astropart. Phys. 29 (2008) 14]*

Conclusions

- ✓ Search for cosmic ray large scale anisotropy at $E > 2 \cdot 10^{17}$ eV with the Auger data set by adopting **2 complementary analyses**
- ✓ Both analyses account for the non-uniformity in acceptance and the weather effect systematics → spurious modulations under control
- ✓ No significant large-scale pattern observed \Rightarrow upper limits at 99% c.l. have been set:
 - → First constraints on some theoretical models : models predicting anisotropies > 2% below 4 EeV are excluded
 - → Anisotropy reported by AGASA (4% for 1<E<2 EeV) not confirmed

In the near future:

- profit from Infill array \rightarrow lower energy threshold
- multipolar LS search

27/05/2011

RICAP 2011

27/05/2011

RICAP 2011

Harmonic Analysis

Rayleigh analysis *[J. Linsley, Phys. Rev. Lett. 34 (1975)]* = traditional way to study a modulation in right ascension of CRs arrival directions, as the one expected e.g. if the CR distribution has a significant dipolar component .

 $A = \frac{2}{N} \sum_{i=1}^{N} \cos \alpha_i \quad \text{and} \quad B = \frac{2}{N} \sum_{i=1}^{N} \sin \alpha_i$ First harmonic amplitude and phase: $r = \sqrt{A^2 + B^2}$ and $\Psi = \operatorname{atan} \frac{B}{A}$

Probability for the observed amplitude to arise just as a statistical fluctuation of an isotropic distribution: $P = \exp(-r^2/4N)$

The analysis can be done in:

- *solar time* \rightarrow detector instabilities + weather modulations
- *sidereal time* \rightarrow modulation due to a genuine large scale pattern in the sky
- *anti-sidereal time* \rightarrow to correct apparent sidereal modulations

[F.J.M.Farley and J.R.Storey, Proc. Phys. Soc. A 67 (1954)]

27/05/2011

RICAP 2011

Results: Energy Windows

[EeV]	۲ _{sid} [%]	Prob [%]	Phase (°)	(99%c.l.)
0.25 - 0.5	0.4	67	262	1.3
0.5 - 1	1.2	2	281	1.7
1 – 2	0.5	22	15	1.4
2 – 4	0.8	47	39	2.3
4 – 8	1.8	35	82	5.5
> 8	4.1	9	117	9.9

DATA SET:

- Events recorded by SD from 1 January 2004 to 31 December 2009
- Highest quality cuts + periods with strong instabilities erased \rightarrow duty cycle $\sim 85\%$
- $3 \cdot 10^5$ events above 1 EeV, $3 \cdot 10^4$ above 3 EeV

<u>UPPER LIMITS:</u>

- *below 1 EeV* \rightarrow East-West method
- *above 1 EeV* \rightarrow generalized Rayleigh analysis

calculated according to the distribution drawn from a population characterized by an anisotropy of unknown amplitude [J.Linsley PRL 1975]
 27/05/2011 RICAP 2011 Raffaella Bonino