Status of A Large High Altitude Air Shower Observatory Project

Min Zha For the LHAASO Project Institute of High Energy Physics, Beijing, China

3rd RICAP Workshop 2011, Roma

Outline

• Scientific goals

Project overview: design of the complex experiment

- Full-sky survey detector: WCDA
- High energy γ ray detector: KM2A
- Cosmic Ray Detector Array for CRs > 30 TeV
 - Wide FOV Cherenkov Telescope Array(WFCTA)
 - Shower Core Detector Array (SCDA) / PRISMA
- Extension for low energy γ rays and high energy CRs
 - Extension using TUNKA-technique by Russian Collaborators
- Prototype detectors and engineer array
- Status

Scientific Problems and Possible Solutions

- TeV γ-ray observation has an opportunity of finding CR origin: 80+ sources discovered
 - 50+ galactic sources: γ at high energy (>30TeV) is crucial
 (high sensitivity and high energy resolution)
 - All-sky survey for γ source population is necessary
 (full duty cycle, wide FOV and sufficient sensitivity)
- PeV CR spectra of individual composition
 - Bridge between space/balloon borne measurements and ground based UHECR measurements
- Exploring for new physics frontier

A Tentative Design of A Complex Detector Array

Three major components:

- 90k m² water Cerenkov detector for γ >100GeV;
- 1km^2 complex array for $\gamma + \text{CR} > 30 \text{TeV}$:
 - Array of 5000 scintillation detectors ;
 - Array of 1200 µ detectors (buried water C detectors).
- Cosmic Ray Detector Array for CRs >30TeV:
 - Array of 24 C-telescopes;
 - Shower Core Detector /PRISMA;
 - Extension using TUNKA-technique.

Project Overview

Yang-Ba-Jing, Tibet, China

LHASA city, capital of the province:
> 3 flight connections to Beijing, Shanghai;
> 2 train connections to Beijing, Shanghai (<48 hours);
> Many flight / train connections to other cities.

Survey for γ sources (extra-galactic)

Milagro demonstrated that the technique works for source surveying

Gamma / Proton Discrimination

Monitoring for Transient Phenomena: GRBs and AGN Flares

- GRB: ~2 per year;
- Light curves of AGN in bins of one minute.

WCDA Prototype in IHEP

2 layers of 1 m×1 m Scintillators

Setup in the very beginning

Results: Water & Rate

Results: Second Peak

Status of WCDA Engineering Array

- The array consists of
 - -9 WCDs and 1 MD;
 - 4 scintillator modules surrounding the array;
 - A water purifier and circulating system;
 - An LED+fibers system for time calibration & SPE measurement;
 - A charge calibration system using cosmic muons.
- Status
 - Now it is in "dry run" mode;
 - Will start the real data-taking in June.

Sensitivities for $10 \text{TeV} \gamma$ sky

- CR BG-free (10^{-5})
- γ survival rate ~99%
- Angular resolution
 0.5°above 60TeV

 γ/p discrimination

ED of KM2A

• Total 5137 cassettes, distributed in an area of 1 km².

MD of KM2A

- Total 1161 tanks, distributed in an area of 1 km².
- MD prototype will be installed and run in this summer

Engineering Array of KM2A at IHEP

Engineering Array of KM2A at YBJ

Lateral distribution and direction reconstruction for a shower event in ARGO & ED.

ARGO Bigpad charge readout vs. charge values of ED.

Scientific Problem: Cosmic Rays

- Touch-down at 5TeV: connection with direct measurement;
- Absolute energy scale: Bottom-up scheme or T.Gaissor's "anchoring"
- Knee puzzle: mult-parameters

Wide Field of View Cherenkov Telescope Array (WFCTA)

- 8×3 mirrors
- Mirror size: 4.7 m²
- Camera:
 - 16×16 PMT array;
 - -1° pixel;
 - FOV 14°×16°;
- Electronics: 50Hz FADC (20ns/bin).

10-10

10⁻¹¹

10¹³

10¹⁴

Energy (eV)

•160 k events. •Resolution < 15%, with bias<3%; •Core resolution <1 m.

Laser calibration facility

Shower Core Detector

- Total 5000 m², carpet, in the center of the array.
- A unit: 80 cm × 50 cm;
- Lead plate on top.

Ö

- Thickness of plastic SC: 1 cm;
- 2 PMTs to readout.

LHAASO Extension to 2nd Knee with TUNKA

Other Topics

Proposing and current status

- In Nov. 2010, CCDR (Chinese Committee of Development and Reformation) reviewed all proposals in 7 groups and LHAASO was ranked as No. 1 in the group of HEP&NP;
- In Jan. 2011, CCDR reviewed 21 candidate projects and LHAASO was selected as one to be supported in next 5 years;
- Reviewing of LHAASO for its design and budget will start soon. The proposal is expected to be approved soon because of its readiness in terms of R/D and site preparation;
- It is planned for a construction of 5-6 years.
- Physics design report (PDR) is expected to release by end of 2011;
- Technical design report (TDR) is expected to release by mid of 2012.

Engineering Array at YBJ

Collaboration

- Domestic collaboration
 - ARGO collaboration:
 - APC of IHEP
 - Tibet Univ.
 - SW Jiaotong Univ.
 - Yunnan Univ.
 - Shandong Univ.
 - Hebei Normal Univ.
 - New collaborators
 - EPC of IHEP
 - USTC
 - Tsinghua Univ.
 - PKU
 - IAP
 - CSSAR
 - NSMC
 - IMP
 - Communication Members (potential collaborators):
 - Shanghai Jiaotong Univ.
 - Eastern Institute of Science and Technology
 - Nanking Univ.

- International collaboration
 - ARGO collaboration:
 - Rome II Univ.
 - Napoli Univ.
 - Turino Univ.
 - France IN2P3
 - INPO
 - LAL
 - Russia Tunka

.....

