Tunka-133: status, all particle spectrum and future plans

L.A.Kuzmichev (SINP MSU) On behalf of the Tunka Collaboration

RICAP -2011, May 2011, Roma

Tunka Collaboration

S.F.Beregnev, S.N.Epimakhov, N.N. Kalmykov, N.I.KarpovE.E. Korosteleva, V.A. Kozhin, L.A. Kuzmichev, M.I. Panasyuk, E.G.Popova, V.V. Prosin, A.A. Silaev, A.A. Silaev(ju), A.V. Skurikhin, L.G.Sveshnikova I.V. Yashin, Skobeltsyn Institute of Nucl. Phys. of Moscow State University, Moscow, Russia;

N.M. Budnev, A.V.Diajok, O.A. Chvalaev, O.A. Gress, A.V.Dyachok, E.N.Konstantinov, A.V.Korobchebko, R.R. Mirgazov, L.V. Pan'kov, Yu.A. Semeney, A.V. Zagorodnikov Institute of Applied Phys. of Irkutsk State University, Irkutsk, Russia;

B.K. Lubsandorzhiev, B.A. Shaibonov(ju), N.B. Lubsandorzhiev Institute for Nucl. Res. of Russian Academy of Sciences, Moscow, Russia;

V.S. Ptuskin IZMIRAN, Troitsk, Moscow Region, Russia;

Ch. Spiering, R. Wischnewski DESY-Zeuthen, Zeuthen, Germany;

A.Chiavassa Dip. di Fisica Generale Universita' di Torino and INFN, Torino, Italy.

A.Haungs, F. Schroeder Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for the Acceleration Limit of Galactic Sources

- Energy range 10¹⁶-10¹⁸ eV demands:
- 1 km² with spacing smaller than that at Auger
- complementary techniques

- KASCADE-Grande
- IceTop/IceCube
- Tunka-133 (calorimetric)
- NEVOD-DÉCOR
- -GAMMA
- Auger low energy extension
- HiSCORE
- LHAASO

terminated

- in operation
- in operation
- in operation
- n operation
- in operation
 - 80% ready
 - planned
 - planned

OUTLINE

- 1. Non-imaging Air Cherenkov Technique
- 2. Tunka-133.
- 3. Energy spectrum.
- 4. Mass composition.
- 5. Plan for the Tunka-133 upgrading.

Advantage of Cherenkov Technique:

```
1. Good energy resolution - up to 15\%

2. Good accuracy of X<sub>max</sub> - 20 -25 g/cm<sup>2</sup>

3. Good angular resolution - 0.1 - 0.3 deg

4. Low cost - Tunka-133 - 1 km<sup>2</sup> array:

0.5 10<sup>6</sup> Eur ( construction and deployment)

+

0.2 10<sup>6</sup> Eur( PMTs)

100 km<sup>2</sup> array - 10<sup>7</sup> Eur
```

Disadvantage:

1.Small time of operation (moonless, cloudless nights) -5-10%

Usage of Cherenkov Light Lateral Distribution Function (LDF) for the Reconstruction of EAS Parameters

LDF from CORSIKA

Experimental data fitted with LDF

Q(R) = F(R, p) (only one

$$\uparrow$$
 parameter) light flux at core distance 175 m -
Q₁₇₅ ~ Energy
Steepness of LDF \Rightarrow P = Q(100)/Q(200) \Rightarrow X_{max}

CORSIKA: WDF(Width Distant Function) fitting

Tunka-133 0 0 0 0 0 0 0 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0 0 00 Tunka-25 0000000 0000000 00000 00000 00

51° 48' 35" N 103° 04' 02" E 675 m a.s.l.

Tunka-133 – 1 km² "dense" EAS Cherenkov light array

Energy threshold 10¹⁵ eV

Accuracy: core location ~ 10 m energy resolution ~ 15% δX_{max} < 25 g·cm⁻²

Two seasons of array operation

2009 - 2010 :286 hours of good weather . 2010 - 2011: 270 hours of good weather. > 4·10⁶ events with energy ≥10¹⁵ 3B.

Trigger counting rate during one night .

>10 events during every night with number of hitted detectors more than 100.

in one event.

.A–Fitting experimental points with LDF B – Fitting of τ (R) with Width – Distance Function.

Energy spectrum and mass composition after first season (2009-2010) of array operation

Tunka-133: Primary energy spectrum(preliminary)

MAY 2011

Comparison with GAMMA results

Mean mass composition Tunka-133

Mass composition: 3 dif. variants

- 1) Emax (P)
- In Galaxy ; 4 PeV
- 2) Emax (P)=4 and
- 600 PeV
- This variant predicts a heavy composition at 10¹⁸ eV
- 3) SNR Ia + He stars
 +MetaGalactic with
 mixed composition in
 sources

Plan for Tunka-133 upgrading

- Far distant clusters for increasing effective area
- Net of radio antennas
- Low energy threshold array
- Scintillation muon counters

 E_0 , X_{max} (from Tunka-133), N_{μ}

Registration of radio signals from EAS

Short Aperiodic Loaded Loop Antenna (SALLA) (A.Haungs et al. Institute fur Kernphysick, Forschungszentrum, Karslruhe, Germany

2 antennas + 4 (this summer) + 19 (next summer)

Nearly 70 radio EAS candidates

Antennas are connected to the free FADC channels of Tunka-133 cluster electronics

Event example

Correlation with Energy + Distance

Candidate events at high energies + low distances: Clearly linked to air showers

Events with largest energy – near to 10^{19} eV – was found out with the help of radio antenna

HiSCORE project – wide-angle gamma-telescope with area 100 km² and threshold 30 TeV (M.Tluczykont et al , ArXiv: 0909.0445 and yesterday report)

HiSCORE: Hundred i Square-km Cosmic ORigin Explorer

Time schedule 1.First SCORE Station will be installed at Tunka in this summer-autumn 2.25 station at 2012 – 1 sq. km wide-angle gamma telescope

Energy spectrum from $10^{14} - 10^{17}$ eV - compare with Tunka-25 and Tunka-133 results

Muon detectores

40 muon detectors on the area of 1km^2

Conclusion

- 1.The spectrum from 10¹⁶ to 10¹⁷ eV cannot be fitted with one power law index g: 3.2 to 3.0 at 2 10¹⁶ eV.
- 2. Very good agreement with KASKADE-Grande results (up to 7.10¹⁶).
- 3. For energy > 10^{17} eV we need much more statistics.
- 4. "Bump" at 8.10¹⁶ eV possible indication of a bump + agreement with GAMMA. But not seen by KASKADE-Grande.
- 5. Indication on light composition at energy > 10^{17} eV
- 6.Update (2011-2012):
 - Far distant clusters.
 - Net of radio antennas.
 - First SCORE detectors.

