Performance Studies for the KM3NeT Neutrino Telescope

RICAP'11

Kopper

KM3NeT

Nikhef Amsterdam

on behalf of KM3NeT

000

....

possible sources

00

6.0

possible sources

0000000000000

...

0.0

..........

000000000

0.0

neutrino astroparticle physics

neutrino telescopes

signal and background

best possible design for KM3NeT

best possible design for KM3NeT

best possible design for KM3NeT

multiPMT

best possible design for KM3NeT

needed a new track reconstruction algorithm

best possible design for KM3NeT

based on

generic

probability dist. func.

needed a new track reconstruction algorithm

(point source) analysis

.........

E⁻² flux $\frac{d\phi_{\nu_{\mu}}}{dE} = 1.0 \cdot 10^{-8} \left(\frac{E}{GeV}\right)^{-2} GeV^{-1} cm^{-2} s^{-1}$ discovery with (e.g.) 5σ in exclude with e.g. 90% C.L. **50% of experiments** ("sensitivity") ("discovery potential") $\left(\frac{\mathrm{d}\phi_{\mathbf{v}_{\mu}}}{\mathrm{d}E}\right)_{\mathrm{disc.}} = MDF \cdot \frac{\mathrm{d}\phi_{\mathbf{v}_{\mu}}}{\mathrm{d}E}$ $\left(\frac{\mathrm{d}\phi_{\mathbf{v}_{\mu}}}{\mathrm{d}E}\right)_{\mathrm{sens}} = MRF \cdot \frac{\mathrm{d}\phi_{\mathbf{v}_{\mu}}}{\mathrm{d}E}$ **MRF**: **MDF**: "model rejection factor" "model discovery factor"

example source

RX J1713.7-3946

$$k (E/\text{TeV})^{-\gamma} \exp\left(-\sqrt{E/e}\right)$$

 $k = 16.80 \cdot 10^{-15} \text{ GeV}^{-1} \text{s}^{-1} \text{cm}^{-2}$
 $\gamma = 1.72$
 $e = 2.10 \text{ TeV}$

assumed: disc with radius 0.65°

example source

RX J1713.7-3946

$$k (E/\text{TeV})^{-\gamma} \exp\left(-\sqrt{E/e}\right)$$

 $k = 16.80 \cdot 10^{-15} \text{ GeV}^{-1} \text{s}^{-1} \text{cm}^{-2}$
 $\gamma = 1.72$
 $e = 2.10 \text{ TeV}$

assumed: disc with radius 0.65°

Fermi-LAT results suggest leptonic acceleration

RX JI7I3.7-3946

$$k (E/\text{TeV})^{-\gamma} \exp \left(-\sqrt{E/e}\right)$$

 $k = 16.80 \cdot 10^{-15} \text{ GeV}^{-1} \text{s}^{-1} \text{cm}^{-2}$
 $\gamma = 1.72$

 $e = 2.10 \,\mathrm{TeV}$

assumed: disc with radius 0.65°

however: may still be hadronic

RX J1713.7-3946 $k \left(E/\text{TeV} \right)^{-\gamma} \exp \left(-\sqrt{E/e} \right)$ $k = 16.80 \cdot 10^{-15} \,\mathrm{GeV}^{-1} \mathrm{s}^{-1} \mathrm{cm}^{-2}$ 1.72e = $2.10 \,\mathrm{TeV}$

assumed: disc with radius 0.65°

use it as a benchmark

RX |1713.7-3946 $k \left(E/\text{TeV} \right)^{-\gamma} \exp \left(-\sqrt{E/e} \right)$ $k = 16.80 \cdot 10^{-15} \,\mathrm{GeV}^{-1} \mathrm{s}^{-1} \mathrm{cm}^{-2}$ 1.72e = $2.10\,\mathrm{TeV}$

assumed: disc with radius 0.65°

5σ detection of RX J1713

(5σ, one-sided in 50% of exp.)	disc with R=0.65°	point-like
6m bar length (starting point)	12 years	5.4 years
12m bar length	ll years	4.9 years
48m bar length	8.5 years	3.8 years

.................


```
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.............
 -----
```