
Carmelo Pellegrino

JWT Mapping to Unix
User
CNAF Multilateral

• Why? - The problem

• Proposed solution

• Possible applications

Outline

Why?
Because... the initial use-case

• HTCondor support for JWTs:

‣ https://htcondor.com/htcondor-ce/v5/configuration/
authentication/#scitokens

3

https://htcondor.com/htcondor-ce/v5/configuration/authentication/#scitokens
https://htcondor.com/htcondor-ce/v5/configuration/authentication/#scitokens

Why?!?!?
why is it done in this way?

• Big collaborations do make use of a Workload Management
System (WMS, like DIRAC, PANDA, AliEn, etc...)

‣ Few (iss, sub) pairs to map per big VO

• SCITOKENS => OSG use case in mind

‣ Each OSG-supported VO has one dedicated token issuer

‣ VO <=> issuer

4

Why?
pitfalls

1. Difficult to put in production:

‣ has to be filled by hand

‣ static file

2. Medium/Small collaborations not using a WMS => tons of hand-made mapping
in the future?

3. Mapping entire OSG collaborations with one single Unix user

4. Complete lack of VO/group handling in HTCondor. In IAM:

‣ VO => (iss, sub, [wlcg.]groups). Given the VO, a token can be created

‣ not "<=>". Given a token, cannot automatically associate to a VO (hence uid)

‣ What if a token has multiple valid groups in its claims?
5

Proposed solution
Token to Unix User - t2u2

• Written in C++14

• HTTP-based

• Easy to configure

• Very small code base

• Very small resource
consumption and fast

• https://baltig.infn.it/budda/t2u2

6

• Few dependencies:

‣ openssl 1.1.1k

‣ Crow (C++ HTTP framework)

‣ boost 1.69.0 (dep of Crow)

‣ libcurl

‣ yaml-cpp (configuration file)

‣ jwt-cpp

https://baltig.infn.it/budda/t2u2

Proposed solution
Policy definition

policies:
 allow_untrusted_issuer: false # default: false
 trusted_issuers: # trusted IAMs
 - https:///iam-t1-computing.cloud.cnaf.infn.it
 - https:///wlcg.cloud.cnaf.infn.it
 groups: # dictionary of IAM groups
 wlcg:
 reuse_users: true # default: false
 users: # local Unix users
 - wlcg001
 - wlcg002
 dteam:
 users:
 pattern: "dteam%03d" # pattern like in `man 3 printf`
 range: [1, 100]
 km3net:
 users:
 pattern: "km3net%03d"
 range: [1, 50]

7

Proposed solution
Request workflow

8

Start

Valid
token?

No Yes

Error
Allowed
issuer?

No Yes

Allocate
new slot

Use cache Already
matched?

Yes

Find matching group in policies
(in order of appearance)

No

DB

Answer

Not found
Found?

Found

Proposed solution
Mapping algorithm

9

preferred_group := http::headers::preferred_group

if preferred_group {
 if preferred_group in (jwt::claims::groups or jwt::claims::wlgc.groups) {
 group := preferred_group
 } else {
 error();
 }
} else {
 if not empty(jwt::claims::groups) {
 group := jwt::claims::groups[0]
 } else if not empty(jwt::claims::wlcg.groups) {
 group := jwt::claims::wlcg.groups[0]
 } else {
 error();
 }
}

user := group in policies

• Run the executable:

$./t2u2 [--configfile <file.yml=/etc/t2u2/config.yml>]

• Query the server:

$ curl -H "Authorization: Bearer $TOKEN" https://t2u2.example.com/map

 myuserntof

$ curl -H "Authorization: Bearer $TOKEN" -H 'X-Preferred-Group: litebird' https://t2u2.example.com/map

 myuserlitebird

Examples of usage

https://t2u2.example.com/map
https://t2u2.example.com/map

Possible weak points
Token to Unix User - t2u2

• Home-made solution

‣ Needs maintenance

• DB is currently a local text file + in-memory copy

‣ No distributed DB => scalability problem?

‣ ~4.3 connections/s at each CNAF CE (6 in total)

‣ average response delay ~O(ms)

11

• HTCondor-CE mapping

‣ needs support in HTCondor for a callout (as per GSI Auth with
ARGUS)

‣ HTCondor devs would like to receive a pull request to work on

• StoRM mapping (?)

‣ Discussion

Possible applications

Backup

Configuration file
log:
 level: debug
ssl:
 disable: false # default
 cert: /etc/t2u2/cert.pem
 key: /etc/t2u2/key.pem

db: cache.db
address: 127.0.0.1 # address to bind
port: 9090 # port to bind
policies:
 allow_untrusted_issuer: false # default
 trusted_issuers:
 - https:///iam-t1-computing.cloud.cnaf.infn.it
 - localhost:8080
 groups: # IAM groups
 wlcg:
 reuse_users: false # default
 users:
 - wlcg001 # Unix users
 - wlcg002
 dteam:
 users:
 pattern: "dteam%03d"
 range: [1, 100]
 km3net:
 users:
 pattern: "km3net%03d"
 range: [1, 3]

