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Why?
Because... the initial use-case

• HTCondor support for JWTs:


‣ https://htcondor.com/htcondor-ce/v5/configuration/
authentication/#scitokens
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https://htcondor.com/htcondor-ce/v5/configuration/authentication/#scitokens
https://htcondor.com/htcondor-ce/v5/configuration/authentication/#scitokens


Why?!?!?
why is it done in this way?

• Big collaborations do make use of a Workload Management 
System (WMS, like DIRAC, PANDA, AliEn, etc...)


‣ Few (iss, sub) pairs to map per big VO


• SCITOKENS => OSG use case in mind


‣ Each OSG-supported VO has one dedicated token issuer


‣ VO <=> issuer
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Why?
pitfalls

1. Difficult to put in production:


‣ has to be filled by hand


‣ static file


2. Medium/Small collaborations not using a WMS => tons of hand-made mapping 
in the future?


3. Mapping entire OSG collaborations with one single Unix user


4. Complete lack of VO/group handling in HTCondor. In IAM: 


‣ VO => (iss, sub, [wlcg.]groups). Given the VO, a token can be created 

‣ not "<=>". Given a token, cannot automatically associate to a VO (hence uid)


‣ What if a token has multiple valid groups in its claims?
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Proposed solution
Token to Unix User - t2u2

• Written in C++14


• HTTP-based


• Easy to configure


• Very small code base


• Very small resource 
consumption and fast


• https://baltig.infn.it/budda/t2u2

6

• Few dependencies:


‣ openssl 1.1.1k


‣ Crow (C++ HTTP framework)


‣ boost 1.69.0 (dep of Crow)


‣ libcurl


‣ yaml-cpp (configuration file)


‣ jwt-cpp


https://baltig.infn.it/budda/t2u2


Proposed solution
Policy definition

policies: 
  allow_untrusted_issuer: false                      # default: false 
  trusted_issuers:                                   # trusted IAMs 
    - https:///iam-t1-computing.cloud.cnaf.infn.it 
    - https:///wlcg.cloud.cnaf.infn.it 
  groups:                                            # dictionary of IAM groups 
    wlcg: 
      reuse_users: true                              # default: false 
      users:                                         # local Unix users 
        - wlcg001 
        - wlcg002 
    dteam: 
      users: 
        pattern: "dteam%03d"                         # pattern like in `man 3 printf` 
        range: [1, 100] 
    km3net: 
      users: 
        pattern: "km3net%03d" 
        range: [1, 50]
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Proposed solution
Request workflow
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Proposed solution
Mapping algorithm
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preferred_group := http::headers::preferred_group 

if preferred_group { 
  if preferred_group in (jwt::claims::groups or jwt::claims::wlgc.groups) { 
    group := preferred_group 
  } else { 
    error(); 
  } 
} else { 
  if not empty(jwt::claims::groups) { 
    group := jwt::claims::groups[0] 
  } else if not empty(jwt::claims::wlcg.groups) { 
    group := jwt::claims::wlcg.groups[0] 
  } else { 
    error(); 
  } 
} 

user := group in policies



• Run the executable:

$ ./t2u2 [--configfile <file.yml=/etc/t2u2/config.yml>] 

• Query the server:

$ curl -H "Authorization: Bearer $TOKEN" https://t2u2.example.com/map 

 myuserntof 

$ curl -H "Authorization: Bearer $TOKEN" -H 'X-Preferred-Group: litebird' https://t2u2.example.com/map 

 myuserlitebird

Examples of usage

https://t2u2.example.com/map
https://t2u2.example.com/map


Possible weak points
Token to Unix User - t2u2

• Home-made solution


‣ Needs maintenance


• DB is currently a local text file + in-memory copy


‣ No distributed DB => scalability problem?


‣ ~4.3 connections/s at each CNAF CE (6 in total)


‣ average response delay ~O(ms)
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• HTCondor-CE mapping


‣ needs support in HTCondor for a callout (as per GSI Auth with 
ARGUS)


‣ HTCondor devs would like to receive a pull request to work on


• StoRM mapping (?)


‣ Discussion

Possible applications



Backup



Configuration file
log: 
  level: debug 
ssl: 
  disable: false                # default 
  cert: /etc/t2u2/cert.pem 
  key: /etc/t2u2/key.pem 

db: cache.db 
address: 127.0.0.1              # address to bind 
port: 9090                      # port to bind 
policies: 
  allow_untrusted_issuer: false # default 
  trusted_issuers: 
    - https:///iam-t1-computing.cloud.cnaf.infn.it 
    - localhost:8080 
  groups:                       # IAM groups 
    wlcg: 
      reuse_users: false        # default 
      users: 
        - wlcg001               # Unix users 
        - wlcg002 
    dteam: 
      users: 
        pattern: "dteam%03d" 
        range: [1, 100] 
    km3net: 
      users: 
        pattern: "km3net%03d" 
        range: [1, 3]


