Development of Machine Learning Algorithms for MPGDs

G. Cibinetto (INFN Ferrara) on behalf of the 12.4.MPGD task group

StayWell General Meeting – June 21-22, 2022

The idea underneath the task

- MPDGs are gaseous detectors with high spatial resolution, good radiation tolerance, ideal for tracking in large-background environment
- MPGDs are widely used in experiments and planned for many upgrades
- Resistive MPGDs offer spark protection important for operational stability
- Charge centroid and microTPC algorithms guarantee tracking performance over a wide range of particle incident angles and external magnetic field
- Nevertheless, the performance of traditional algorithms are limited by the presence of high background
- Machine Learning approach can be used to overcome these limitations

MPGDs \rightarrow resistive MPGDs \rightarrow micro-Resistive Well (μ -RWELL)

- Proposed for
 - LHCb muon upgrade
 - Super tau-charm factories
 - JLAB, EIC
 - IDEA @ FCC_ee pre-shower and muon system

IDEA slice Test Beam results NIM A958 (2020) 162088

Development of Machine Learning Algorithms for MPGDs µ-RWELL

G. Cibinetto (INFN Ferrara) on behalf of the 12.4.MPGD task group

StayWell General Meeting – June 21-22, 2022

General description of the task

synergy with Task 7.3 and 11.2

- Timeline and task: 4 years
 - First year: uRWELL simulation → implementation of resistive layer and tuning to test beam data
 - Second year: development of cluster selection and track finding based on simulation
 - Third year: track cleaning and refinement
 - Fourth year: application to IDEA detector pre-shower and muon \rightarrow optimization
- Deliverables
 - 1. A scientific paper describing the performed activity and the results.
 - 2. An open-source software suite for training and testing ML algorithms with MPGD data and simulations.
- The group is composed by INFN Bologna, Ferrara, LNF and Turin
 - mainly Riccardo Farinelli, Lia Lavezzi e Stefano Spataro

First year work flow

- Focuses on μ-RWELL simulation
 - Start from parametric simulation developed for the BESIII cylindrical GEM detector (GTS) → software framework available
 - First implementation of resistive layer \rightarrow done
 - Tuning to test beam data \rightarrow in progress
 - Add more features (e.g., inter-strip effects) → planned

μ -RWELL simulation

Resistive layer simulation – in progress

- Describe the charge dispersion which depends on the time constant determined by the DLC surface resistivity and the capacitance per unit area. Use the approach from *NIMA* 566:281-285,2006
- Simulation will be tuned with data from a test beam done at CERN in October 2021

Simulation of real signals

Avalanche signal

Total

output

signal

G. Cibinetto

27

Preliminary TB results

- This is the input for the simulation tuning
- Presented @ VCI 2022
- https://indico.cern.ch/event/1044975/contributions/4663799

Next steps

- Complete Test Beam data analysis (in progress)
 - extract charge and time distributions as function of the detector resistivity
 - measure detector performance (efficiency and spatial resolution) at different resistivities
 - preliminary results presented at VCI conference
- Perform Simulation Tuning with TB data (fall 2022)
- Develop cluster reconstruction and track finding algorithms based on detector simulation (2022-23)
- Further Test Beam(s) are under consideration to study a bi-dimensional readout and to expand the resistivity scan

Next to next steps

- Later the ML algorithms will be tested on the IDEA pre-showers and muon detectors as case study
- GEANT4 implementations of the two systems is also ongoing

Impact of Covid-19 on the Task

- The pandemic situation has sowed down the activities on detector characterization
 - the prototypes arrived few days before the test beam \rightarrow no time for gain equalization
 - some prototype were damaged therefore we don't have all the resistivity points we planned for
- We are catching up, but we still have few months of delay w.r.t. the original schedule
- Might expect some further delay IF additional test beam(s) and TB data analysis will be needed

Thanks

Development of ML Algorithms for MPGDs