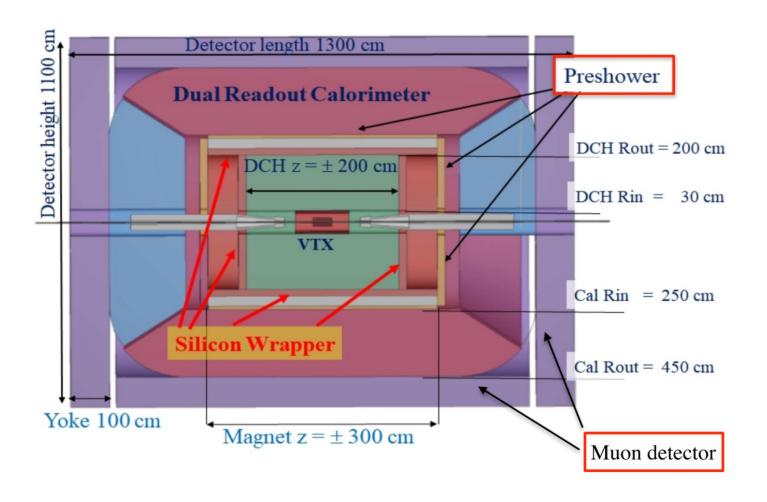
Meeting on micro-RWELL & resistive detectors activity

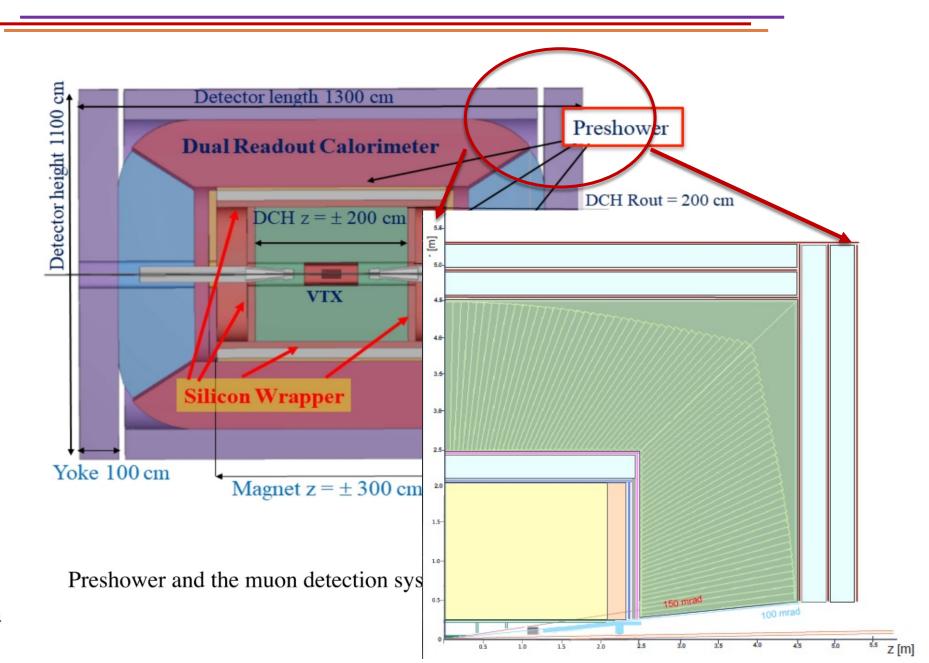
IDEA Muon Detector Simulation first studies and plans

I. Garzia, University of Ferrara and INFN

June 21, 2022



OUTLOOK


- Muon detector simulation with GEANT4
 - Muon detector dimensions
 - high, length, layer numbers
 - μRWELL stratification
 - Materials construction
- Standalone simulation implemented
- Conclusion and Plans

The IDEA Detector

Preshower and the muon detection system are designed with the µRWELL technology

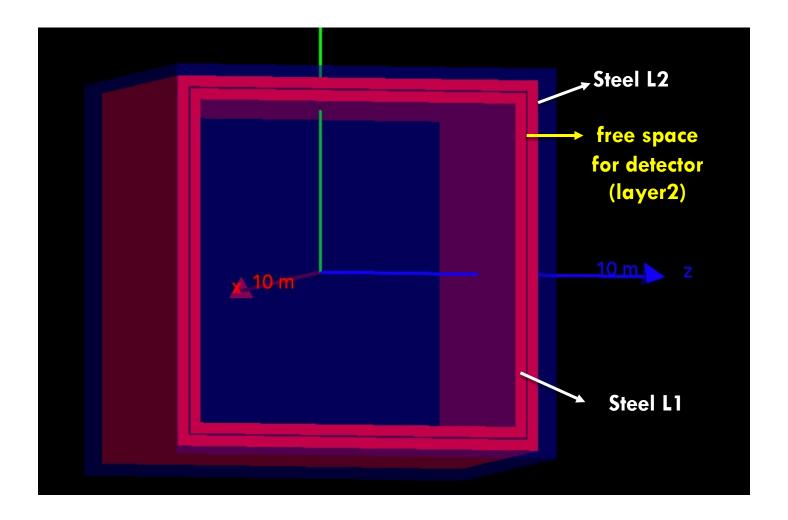
The IDEA Detector

The Muon Detector: reference dimension

- Version 1: we simulate the barrel only
 - box with the following dimension
 - Only barrel (for beginning)

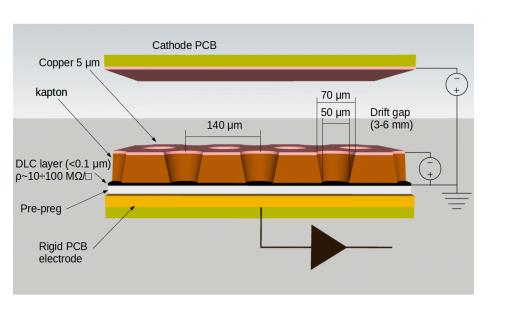
Barrel

Layer	R [mm]	Length [mm]	Thickness [mm]	int. length	pixel size [mm]	area [cm²]	# of channels
μRwell	4520	±4500	20		1.5×500	2.6M	341K
iron	4560	±4500	300	1.5			
μRwell	4880	±4500	20		1.5×500	2.8M	368K
iron	4920	±4500	300	1.5			<u> </u>
μRwell	5240	±5260	20		1.5×500	3.5M	162K


50x50 cm² strips 50 cm pitch 1.5 mm

Endcap

Disk	R _{in} [mm]	R _{out} [mm]	z [mm]	Thickness [mm]	int. length	pixel size [mm]	area [cm²]	# of channels
μRwell	454	5220	±4520	20		1.5×500	1.7M	227K
iron	454	5220	±4560	300	1.5			
μRwell	454	5220	±4880	20		1.5×500	1.7M	227K
iron	454	5220	±4920	300	1.5			
μRwell	454	5220	±5240	20		1.5×500	1.7M	227K


From G. Cibinetto talk on microRWELL-based IDEA subdetectors (14/10/2020)

The Muon Detector: reference dimension

The µRWELL detector

• μRWELL: chatode, drift gap, μRWELL PCB

μRWELL stratification

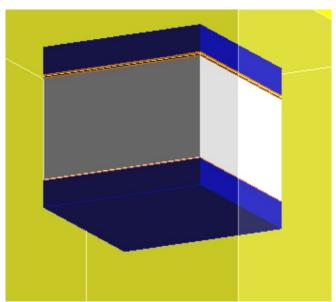
- see R. Farinelli and M. Poli Lener talks for more details on μRWELL concept
 - https://agenda.infn.it/event/28676/contributions/145373/attachments/87079/116206/General Meeting 2021-12-15 urwell.pdf
 - https://agenda.infn.it/event/28676/contributions/145393/attachments/87090/116219/20211215 uRWELL TB Preliminary.pdf

The µRWELL stratification

n E. Fontanesi PhD thesis		·
μ -RWELL component	Thickness of each layer	Material
Cathode	1.6 mm	FR ₄
Cathode	35 $\mu \mathrm{m}$	Copper
Gas gap	6 mm	ArCO2CF4
	5 $\mu \mathrm{m}$	Copper holes
	50 $\mu\mathrm{m}$	Kapton holes
	0.1 μ m	DLC
μ -RWELL + readout PCB	35 $\mu \mathrm{m}$	Copper Strips
	100 $\mu \mathrm{m}$	Film glue (same DLC density)
	35 $\mu \mathrm{m}$	Copper Strips

1.6 mm?

1.6 $\mu \mathrm{m}$


Holes and strips: effective density as first option

 FR_4

• Goal: construction of a parametric code for simulation

```
G4double CStratification[numlayer]={1.6*mm,0.035*mm, 6*mm, 0.005*mm, 0.0001*mm, 0.035*mm, 0.1*mm, 0.035*mm, 1.6*mm};
G4Material* materials[numlayer]={m_FR4,m_Cu,m_gasDet,m_Cu,m_Kapton,m_DLC,m_Cu,m_DLC,m_Cu,m_FR4};
```

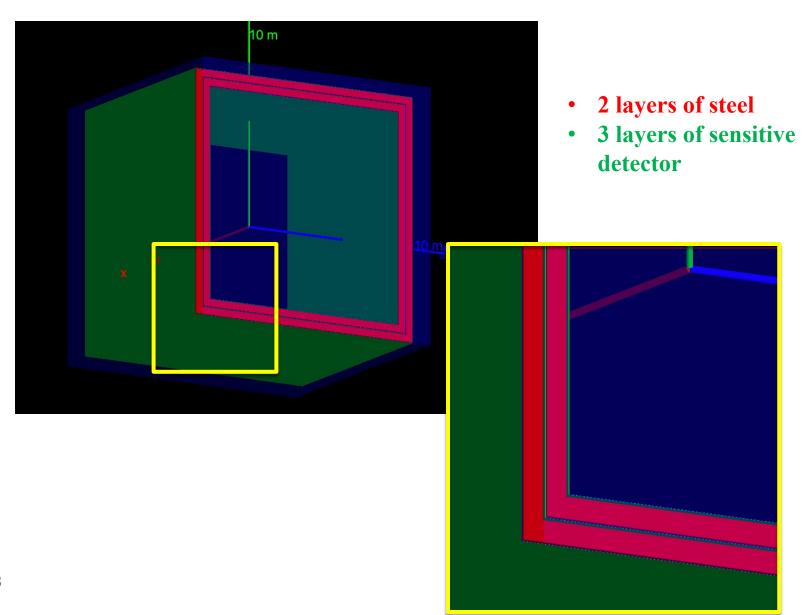
- Two function for steel layers and sensitive detectors
 - CreateSteelLayer(logicEnv, La, r1_steel, thickness_steel, checkOverlaps);
 - DetAssembly(logicEnv, mat, La, radius, CStratification[i],color[i], checkOverlaps);

- ConstructMaterial();
- From G4NistManager:
 - m Cu = nist->FindOrBuildMaterial("G4 Cu");
 - m Kapton = nist->FindOrBuildMaterial("G4 KAPTON");
- DLC:

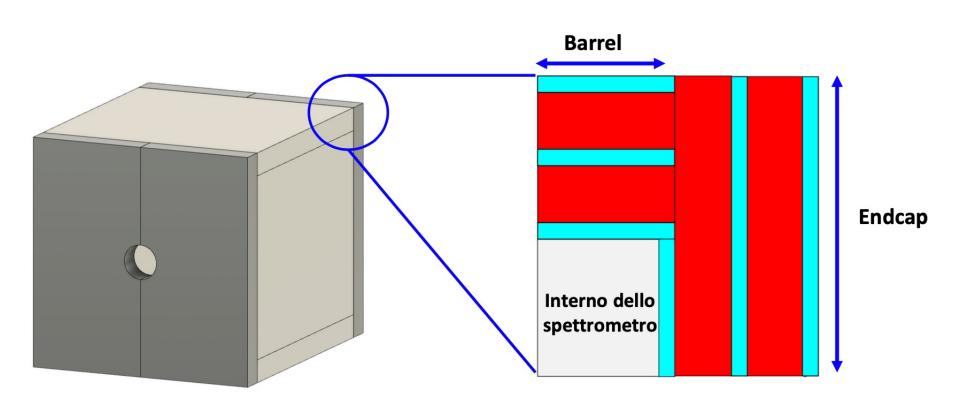
```
///DLC material (carbonio amorfo)
mat_name = "DLC";
mat_density = 2.00*g/cm3; //should be checked (used for CGEM simulation)
n_element = 1;
m_DLC = new G4Material(mat_name, mat_density, n_element = 1);
m_DLC->AddMaterial(m_C , 1); //fraction mass
```

• FR4:

```
mat_name = "FR4";
mat_density = 1.97*g/cm3; ///should be checked (used for CGEM simulation)
n_element = 2;
m_FR4 = new G4Material(mat_name, mat_density, n_element);
m_FR4->AddMaterial(m_FiberGlass,0.6);
m_FR4->AddMaterial(m_Epoxy,0.4);
```

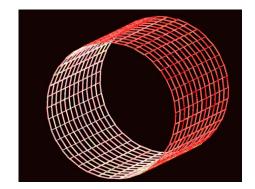

- ConstructMaterial();
- From G4NistManager:

```
    m_Cu = nist->FindOrBuildMaterial("G4_Cu");
```


```
(APTON");
            = "FiberGlass";
 mat_name
 mat_density = 1.99*g/cm3;
 n_{element} = 4;
 m_FiberGlass = new G4Material(mat_name, mat_density, n_element);
 m_FiberGlass -> AddMaterial(Si02, 0.6);
 m_FiberGlass -> AddMaterial(B203, 0.05);
 m_FiberGlass -> AddMaterial(Al203, 0.13);
 m_FiberGlass -> AddMaterial(Ca0, 0.22);
                                                = "Epoxy";
                                   mat_name
                                   mat_density = 1.2*q/cm3;
                                   n_{element} = 2;
FR4:
                                   m_Epoxy = new G4Material("epoxy", mat_density, n_element=2);
                                   m_Epoxy->AddElement(elC, n_natoms=2);
 mat_name
             = "FR4":
                                   m_Epoxy->AddElement(elH, n_natoms=2);
 mat_density = 1.97*a/km3;
 n_{element} = 2:
 m_FR4 = new G4Material (mat_name, mat_density, n_element);
 m_FR4->AddMaterial(m_FiberGlass,0.6);
 m_FR4->AddMaterial(m_Epoxy,0.4);
```

- ConstructMaterial();
- ArCO2CF4:

```
from
                                                                      G4NistManager
G4Material* _CO2 = nist->FindOrBuildMaterial("G4_CARBON_DIOXIDE");
mat_name = "CF4";
mat_density = 3.78*kg/m3;
n_{element} = 2;
G4Material* _CF4 = new G4Material(mat_name, mat_density, n_element = 2);
                                                                                 new
_CF4->AddElement(elC, n_natoms=1);
                                                                              material
_CF4->AddElement(elF, n_natoms=4);
//build gas for the muon detector
mat_name
            = "aasDet":
mat_density = 2.94*kg/m3; ///should be checked (used for CGEM simulation)
n_{element} = 3;
m_gasDet = new G4Material(mat_name, mat_density, n_element = 3);
m_gasDet->AddElement(elAr, 0.295); //fraction mass
m_qasDet->AddMaterial(_CO2, 0.109); //fraction mass
m_gasDet->AddMaterial(_CF4, 0.596); //fraction mass
```



Muon Endcaps

first studies from S. Ghirelli

Plans and Conclusions

- Implementation study started
 - Standalone simulation done
 - Volume overlaps checked

- Start to study what was implemented on lxplus machines
 - reproduce the implemented geometry
 - change some parameters and try to understand the code already available
- Problematic found
 - difficult communication
 - a lot of time needed to understand the code → I have done several test, much more studies needed
 - I'm trying to arrange a meet with other people involved
- My deadline: barrel simulation by the end of Dec 2022

Thanks for your attention