A parametric simulation of the μ -RWELL detector

E. De Lucia, R. Farinelli, M. Giovannetti, L. Lavezzi, G. Morello

Outline

- <u>µRWELL parametrization</u>
- Charge dispersion check
- Simulation results
- <u>Next plans</u>

The main effects taking place in the gaseous detector are parametrized as described in a previous RD51 meeting on the triple-GEM -> LINK

Ionization

Electron drift

Amplification

Resistive

Induction

Readout

Reconstruction

Available tool: GARFIELD++

STRAIGHTFORWARD CHOICE!

Reading from the webpage <u>https://garfieldpp.web.cern.ch</u>

Ionisation \rightarrow **Heed** generates ionisation patterns of

Electric fields \rightarrow interfaces with the finite element

programs (Ansys, Elmer, Comsol and CST) which can compute approximate fields in nearly arbitrary 3D

Transport of electrons \rightarrow **Magboltz** is used for computing electron transport and avalanches in

configurations with dielectrics and conductors

is a toolkit for the **detailed simulation** of detectors which use gases or semiconductors as sensitive medium.

fast charged particles

nearly arbitrary gas mixtures

the main area of application is currently in **micropattern gaseous detectors**.

> Hexagonal Geometry Ansys script

Drift gap

 The ionization position is different from electron to electron → z dependence of spread and sigma of position distribution

• Analogous behavior for time distribution

Gain fluctuations → Polya distribution

[G. lakovidis PhD Thesis, Research and Development in Micromegas Detector for the ATLAS Upgrade]

$$P(G) = C_0 \frac{(1+\theta)^{1+\theta}}{\Gamma(1+\theta)} \left(\frac{G}{\overline{G}}\right)^{\theta} \exp\left[-(1+\theta)\frac{G}{\overline{G}}\right]$$

 \overline{G} = intrinsic gain mean value $\theta \rightarrow$ connected to variance

Nuclear Instruments and Methods in Physics Research A 566 (2006) 281-285

ScienceDirect

Available online at www.sciencedirect.com

Simulating the charge dispersion phenomena in Micro Pattern Gas Detectors with a resistive anode

M.S. Dixit^{a,b,*}, A. Rankin^a

INF

ELSEVIER

The charge dispersion on a single electron

A charge q=1 is injected at t=50ns, using a tau=10ns (see prev. formula).

At t=50ns the charge is collected on the middle strip and then the charge is moved from the mid strip to the neighbors

At t=50ns the current has a delta to 1 and then a small current value flows from the mid strip to the neighbors. There the total current is conservated

RD51 Collaboration meeting, June 2022 - CERN

The induced current is readout by the electronics and it is simulated by means of a shaper (50ns) and an integrator

The charge dispersion - electronics

Check: the negative current observed in the simulation is it present in the real data? If the current flows away from the strips, it seems reasonable to measure a negative current.

The behavior seems shared between data and simulation.

Now simulate 10k events

and test the charge dispersion

RD51 Collaboration meeting, June 2022 - CERN

If tau > 60 ns, then the resistivity is too large to observe any spread

Tau vs cluster size

This behavior copies the one in Performance of µ-RWELL detector vs resistivity of the resistive stage

Fig. 11. Space resolution and strip cluster size as a function of the DLC resistivity. The detector has been operated at gains ensuring full efficiency.

Let's produce some benchmark

Performance vs incident angle

Charge and multiplicity follow the geometry of the interaction.

CC and μ TPC return a reasonable behavior in agreement with the literature [On the space resolution of the μ -RWELL]

Number of strips Cluster charge [fC] 75 6.5 Number of strips 70 5.5 65 60 45 55 Cluster charge [fC] 3.5 SIM SIM 50 0 5 10 15 20 25 30 15 25 30 0 10 20 5 Incident angle [deg] Incident angle [deg]

Plans for the future

Tuning the simulated data with experimental results

Beam setting:

SPS H8 line secondary beam of muon or pion in the range of 10-360 GeV/c

Detector setup:

5 slot available for testing chambers with beam 7 total test chamber to be tested

6 trackers (10x10 cm²)

1D readout and 400 μ m pitch

Gas mixtures: Ar-CO₂-CF₄ (45/15/40)

FEE: APV-25

Tuning the simulated data with experimental results

Development of Machine Learning Algorithms for MPGDs within AidaInnova WP

- MPDGs are gaseous detectors with high spatial resolution, good radiation tolerance, ideal for tracking in large-background environment
- MPGDs are widely used in experiments and planned for many upgrades
- Resistive MPGDs offer spark protection important for operational stability
- Charge centroid and microTPC algorithms guarantee tracking performance over a wide range of particle incident angles and external magnetic field
- Nevertheless, the performance of traditional algorithms are limited by the presence of high background
- Machine Learning approach can be used to overcome these limitations

Development of Machine Learning Algorithms for MPGDs within Aidainnova WP

Timeline and task: 4 years

- First year: uRWELL simulation implementation of resistive layer and tuning to test beam data
- Second year: development of cluster selection and track finding based on simulation
- Third year: track cleaning and refinement
- Fourth year: application to IDEA detector pre-shower and muon optimization

Deliverables

- A scientific paper describing the performed activity and the results.
- An open-source software suite for training and testing ML algorithms with MPGD data and simulations.

The group is composed by INFN Bologna, Ferrara, LNF and Turin

Summary

A parametric **simulation** of a μ RWELL has been developed

Preliminary results of charge, multiplicity, resolution and tau seems reasonable

Now, we plan to tune and counter-check the simulation with a dedicated TB

and in the future the simulation will be used to train an ML algorithm to improve the detector performance

RD51 Collaboration meeting, June 2022 - CERN

