RD_FCC: WP7 µ-RWELLS Status 2022 & Plans 2023

Marco Poli Lener LNF-INFN

Amoroso A.¹, Balossino I.², Bencivenni G.³, Bertani M.³ Cafaro V.⁴, Cibinetto G.², De Lucia E.³, Domenici D.³, Farinelli R.², Felici G.³, Garzia I.², Gatta M.³, Giacomelli P.⁴, Giovanetti M.³ Gramigna S.², Lavezzi L.¹, Melchiorri M.², Mezzadri G.², Morello G.³, Papalino G.³, Scodeggio M.², Sosio S.¹

INFN Torino
 INFN Ferrara
 LNF-INFN
 INFN Bologna

WP7 μ -RWELLs: meeting & conference 2022

3 riunioni del WP7 nel 2022 per l'analisi dati TB

June 2	022	
	16 Jun	RD_FCC: Riunione attività 2022 NEW
May 20	22	
	12 May	III riunione 2022 - Attività uRWELL NEW
March 2	2022	
	24 Mar	II riunione 2022 - Attività uRWELL NEW
January	24 Mar / 2022	II riunione 2022 - Attività uRWELL NEW

3 Presentazioni a Conferenze nel primo semestre

Stato dei proceeding ?????

The $\ensuremath{\mu}\mbox{RWELL}\xspace$ between and muon detectors of the IDEA detector concept	Paolo Giacomelli	Bologna	Talk	VCI 2022	2022	Sì
Preshower and muon detector at FCC-ee	Giulio Mezzadri	Ferrara	Talk	FCC physics workshop	2022	No
RD_FCC u-RWELL	R. Farinelli	Ferrara	Poster	Elba 2022	2022	Sì

RD-FCC $\rightarrow \mu\text{-RWELL}$ for tracking and muon system

The **IDEA detector** is a general purpose detector designed for experiments at future e^+e^- colliders (FCCee and CepC). **Pre-shower detector** and the Muon system are designed to be instrumented with μ -RWELL technology.

Pre-shower Oct.'21 TB Tiles: 50x50 cm² with X-Y readout Strip length: 50cm Strip pitch: 0.4mm Input FEE capacity ~ 70 pF TOT: 330 m². 1.5×10⁶ channels **Muon detector Delivered 22** Tiles: 50x50 cm² with X-Y readout Strip length: 50cm Strip pitch: 1.5mm Input FEE capacity ~ 270 pF TOT: 4000 m^2 . 5×10^6 channels **Requirements:** Efficiency \geq 98% Space resolution $\leq 100 \, \mu m$ (pre-shower) $\leq 400 \,\mu\text{m}$ (muon) Mass production \rightarrow Technology Trasfer to Industry Reduction of FEE channels \rightarrow surface resistivity optimization FEE Cost reduction \rightarrow custom made ASIC (TIGER)

Status WP7 – 2021

Programma WP7 - 2021

L'R&D prevede **lo studio delle prestazioni spaziali** in funzione del **valore di resistività** del piano resistivo (DLC):

- I rivelatori hanno active area di 16x50 cm², lettura 1D, diverso strip pitch e resistività del DLC :
- pre-shower → strip pitch 0.4 (0.8) mm
 resiitivity → 10, 30, 50, 70, >100-200 MOhm/square
- rivelatore di muoni → strip pitch 0.8 1.2 1.6 mm
 resiitivity → 35, 15 MOhm/square

Ritardi workshop di Rui:

- pre-shower → N. 10 proto consegnati durante il TB e testati su fascio (problema su DLC dei proto >100-200 MOhm/square – non consegnati)
- muon → consegna prevista per fine dicembre 2021 (non testati al TB)

I rivelatori pre-shower, equipaggiati con elettronica APV, sono testati su fascio al SPS-H8-CERN in ottobre (20/10 – 3/11 /2021)

Layout prototipi

Beam setup

Experimental Setup

TB GOAL:

- **Charge spread** measurement to optimize readout geometry (strip pitch/width/length vs DLC surface resistivity)
- Measurement of the **space resolution & efficiency** as a function of the detector **surface resistivity** for 0.4mm pitch strip (1-D readout)
- **Tuning** of μ-RWELL **resistive stage** simulations

All the measurement done with Ar/CO2/CF4 45:15:40.

G. Bencivenni et al., NIM A 886 (2018) 36

Results (before VCI)

All the measurement with Ar/CO2/CF4 45:15:40, Drift Field 3.5 kV/cm and **ortogonal incidence** (APV ADC THR=50 ADC)

RD-FCC µ-RWELL, Cluster Size

Nuova analisi nella presentazione di ERIKA (NO SPOLIER)

Programma WP7 – 2022

Programma WP7 - 2022

- Inizio analisi TB 2022 (Matteo, Riccardo, Erika)
- Progettazione uRWELL 1D/2D in sinergia con Clas12 \rightarrow OK
- Ordine uRWELL 1D&2D (4+2 uRWELL) \rightarrow OK
- Realizzazione camere @ CERN \rightarrow produzione già partita, camere consegnate a metà luglio
- Progettazione & ordine materiali per setup TB 2022 \rightarrow OK
- Progettazione & ordine frame in PEEK \rightarrow OK, arriveranno a inizio luglio

Prossimi 6 mesi del 2022

- Conclusione analisi TB 2022 con traccia ortogonale (Erika, Riccardo)
- Inizio analisi TB 2022 con traccia inclinata (Isabella, Lia, Riccardo) vedi slide riunione del 15/12/2022 - https://agenda.infn.it/event/31871/
- Analisi camere con pitch doppio con traccia ortogonale (Mariangela)
- Realizzazione setup TB 2022
- Anticipazione della progettazione camere uRWELL per il 2023
- Ordine DLC Gigi & Annalisa

 Prossima slide

Programma WP7 – 2022: detector

L'R&D per il 2022 prevede la **costruzione di rivelatori con lettura 2D X-Y** con resistività del DLC e strip pitch ottimizzati sulla base delle misure effettuate nel TB-2021.

Possibili layout per il rivelatore 2D

R&D su 2D in sinergia con i gruppi CERN/USTC (CP-DLC collaboration di cui fa parte LNF-DDG). L' ottimizzaziore riguarda:

- larghezza delle strip X-Y (60 e 350um)
- distanza tra i due piani di strip (25 um)
- distanza tra DLC e la X-strip (70 um \rightarrow 28 um per signal amplitude optimization)

Tecnologia di realizzazione PCB più sofisticata Buone prestazioni ma guadagno x2 wrt n 1D

#3 u-RWELL bi-dimensionale Catodo Drift gap Y-strips DLC X-strips

Layout che permette di lavorare a guadagni inferiori (strip di lettura X-Y disaccoppiati). Lettura coordinata Y sul top amplificazione

Tecnologia di realizzazione PCB semplice HV su DLC mentre TOP e X-strips GROUNDED Prestazioni 2D da verificare

Layout che permette di lavorare a guadagni inferiori (strip di lettura X-Y disaccoppiati).

Tecnologia di realizzazione PCB semplice Prestazioni 2D da verificare

Programma WP7 – 2022: detector

L'R&D per il 2022 prevede la **costruzione di rivelatori con lettura 2D X-Y** con resistività del DLC e strip pitch ottimizzati sulla base delle misure effettuate nel TB-2021.

u-RWELLs mono-dimensionali PEP -1D

Strip pitch= 0.76 mm Strip width= 0.15 mm Resistivity= 50-60 MOhm/sq

Programma WP7 – 2022: detector

L'R&D per il 2022 prevede la **costruzione di rivelatori con lettura 2D X-Y** con resistività del DLC e strip pitch ottimizzati sulla base delle misure effettuate nel TB-2021.

GN

IZ.

STRIP RO

(X-DIRECTION

Programma WP7 – 2023

Programma WP7 – 2023: detector

L'R&D per il 2023 prevede la **costruzione di rivelatori con lettura 2D X-Y** di 500 x 500 cm2 active area (la scelta del readout verrà fatta in base ai risultati ottenuti al TB di Ottobre 2022)

Active area size:

500 mm x 500 mm

Per la progettazione:

- Dimensioni area attiva: 50x50 cm2 in sinergia con X17 & Clas12
- Spessore PCB & Catodo: 3.2 mm
- Lettura 1D, 2D, entrambe?
- Pitch & width strip: pitch 780 um \rightarrow N.5 APV/view width: 150 um
- Caso r/o 1D: larghezza settori TOP: 10 cm
- Indipendemente dal r/o, pitch PEP: 10 cm
- Resistività DLC: 30 MOhm/sq

Chiaramente dobbiamo avere analizzato in maniera definitiva i risultati TB 2021 (Erika, Riccardo) + analisi pitch doppio (Mariangela)

Progettazione setup TB (by Gianfranco)

Da implementare supporti scintillatori Fe

Il disegno del setup si basa sull'idea di 2 camere in enemy:

- canali HV & APV minimizzati;
- meno camere da controllare contemporaneamente;
- miglior controllo delle sistematiche nella misura dei residui presentazione Erika)

Programma WP7 – 2022: electronics - stato

TIGER ASIC chip, developed by INFN Turin, will be **tested on uRWELL with GEMROC** readout developed for the BESIII experiment by INFN Ferrara (per la CGEM)

GEMROC modules are based on a discontinued FPGA by ALTERA

In 2022 a R/out system based on System On Modules (SOM) and compatible with GEMROC interface cards will be developed

	Phone: 77500 or 704 Comments (01-Nov-2021 13:2	175 9:30)
E10 3.3 E10	Monday 01/11: Scrubbing started NA beam back tonigl	nt

Thanks for your attention

Detector Comparison

μ-RWELL trackers		μ-RWELL test	FEE signal
10x10cm ²	Active area	5x40cm ²	
300µm / 400µm / 10cm	Strip width/pitch/lenght	150µm / 400µm / 40cm	÷ 2
100µm	Strip distance from DLC	50µm	× 2
Standard (70µm)	Amplification WELL diameter	Larger (to be measured)	÷ ?
30÷40MΩ/□	DLC surface resistivity	10÷80MΩ/□	

Anagrafica & richieste finaziare

21/06/22

Anagrafica @LNF

2022

Ricercatori					
Nome	Età	Contratto	Qualifica	Aff.	%
1 Bencivenni Giovanni		Dipendente	Primo Ricercatore	CSN I	5
2 Bertani Monica		Dipendente	Ricercatore	CSN I	5
3 De Lucia Erika		Dipendente	Primo Ricercatore	CSN I	5
4 Domenici Danilo		Dipendente	Ricercatore	CSN I	5
5 Fransesini Francesco		Dipendente	Assegno di Ricerca	CSN I	0
6 Giovannetti Matteo		Associato	Dottorando	CSN I	15
7 Morello Gianfranco		Dipendente	Ricercatore	CSN I	5
		Numero Totale Ricercatori	7	FTE: 0.40	

Nome	Età	Contratto	Qualifica	Aff.	%
1 Boscolo Manuela		Dipendente	Primo Tecnologo	CSNI	10
2 Felici Giulietto		Dipendente	Dirigente Tecnologo	CSNI	5
3 Pellegrino Luigi		Dipendente	Primo Tecnologo	CSN V	0
4 Poli Lener Marco		Dipendente	Tecnologo	CSN I	5
Numero Totale Tecnologi 4 FTT					

		Tecnici			
Nome	Età	Contratto	Qualifica	Aff.	%
		Numero Totale Tecnic	i 0	FTE: 0.00	

Annotazioni

attività in UE-FCCIS e in UE_CREMLINPLUS sinergiche con RD_FCC

		<u> </u>					
nominativo	qualifica	LHCb	AIDAInn	RD_FCC	AIDAInn	FCC_IS	Cremilin
bencivenni	I-RIC	40	10	5			5
poli lener	Tecn	60	10	5			5
morello	RIC	60	10	5			5
domenici	RIC	0	0	5	10		5
de lucia	RIC	60	10	5			5
felici	Dir Tecn	20	0	5	0		5
giovannetti	Dottorando	70	0	15			0
bertani	RIC	0	0	5	5		0
Boscolo	I-Tecn			20		50	
Pellegrino	I-Tech			0		10	
Zobov	Dir. Tecn			0		10	40
Behtouei	Assegno					100	
Fransesini	Assegno			0		100	

21/06/22

Richieste Finanziarie WP7 – 2022 & 2023

LNF

1.1 – Produzione di 4 prototipi 2D (2 pre-shower + 2 Muon)	15 k€ (Consumo)
1.2 – Contatti con Ditte/CERN per costruzione prototipi	4 k€ (Missioni)
1.3 – Bombole pre-miscelate	2 k€ (Altri consumi)
1.4 – Test Beam al CERN x2 persone x2 settimane	5 k€ (Missioni) (SJ bloccato a Maggio 2022)
1.5 – Spese di trasporto materiale al TB	2 k€ (Trasporti) → 1 k€

LNF

- 1.1 Produzione di 4-6 prototipi 2D 50x50 cm2 (1D o 2D readout) 25-30 k€ (Consumo stiamo richiedendo offerta @ Rui)
- 1.2 Contatti con Ditte/CERN per costruzione prototipi $6 \ k \in (Missioni)$ 1.3 Bombole pre-miscelate $2 \ k \in (Altri \ consumi)$ 1.4 Test Beam al CERN x2 persone x2 settimane $5 \ k \in (Missioni)$
- 1.5 Spese di trasporto materiale al TB 2 k€ (Trasporti)

2022

Programma WP7 – 2022: uRWELL simulation (synergy with Cremlinplus and AIDAINNOVA)

Resistive simulation - in progress

Describe the charge dispersion at the anode which depends on the time constant determined by the DLC surface resistivity and the capacitance per unit area.

Use approach from Nucl.Instrum.Meth.A566:281-285,2006 (DIXIT)

The simulated spatial and temporal charge evolution will be convoluted to the intrinsic rise-time of the detector and the electronics shaping time effects and then compared with results from test beam

Inter-strip (X-talk) induction studies - planned

The **probability to induce a signal on neighbor strip** studied **as a function of the charge readout by the central strip**, and the **relative delay between the two signals (central strip and neighbor)**

Experimental Setup

TB plan: measurement of the space resolution & efficiency as a function of the detector surface resistivity for 0.4mm pitch strip (1-D readout).

All the measurement done with Ar/CO2/CF4 45:15:40.

10² 10² Resistivity (ΜΩ/□) G. Bencivenni et al., NIM A 886 (2018) 36

10

Cluste

TB analysis

µ-RWELL performance overview

Gain

Capacitive-sharing readout: Principe & Motivation (K.GNAVO)

Principe of capacitive-sharing readout structures:

- ◆ Vertical stack of pads layers ⇒ Transfer of charge from MPGD via **capacitive coupling**
- A given arrangement of the pads position from one layer to the layer underneath as well as the doubling in size of the pad pitch allows:
 - Transverse sharing of the charges between neighboring pads of the layer (i+1)
 from vertical charged transfer from layer (i) through capacitive coupling
 - Principle of transverse charge-sharing through capacitive coupling i.e.,
 capacitive-sharing is illustrated on the cross-section sketch on the left
- The scheme preserves of the position information i.e. spatial resolution with large readout strips or pads: Goal 50 μm for 1-mm strip r/o and 150 μm for 1 cm² pad r/o
- Sasic proof of concept established with 800 μm X-Y strip

Motivation & some key facts of capacitive-sharing readout:

- Develop high performance & low channel count readout structures for MPGDs:
- ✤ Reduce the number of readout electronic channels for large area MPGDs
- ✤ Low-cost technology for large area I standard PCB fabrication techniques

