

Light complex scalar minimally coupled to gravity

Easy to get light scalars $\phi \rightarrow \phi + c$

$10^{-21} \,\mathrm{eV} \, \lesssim \mu \lesssim 10 \,\mathrm{eV}$

 $\phi \rightarrow \phi + c$

Assume no interactions

Goals

- Analytically understand the zoo of solutions
- Check numerical results
- Extend previous work
- ► Emphasize horizon effects

$$\Box \phi - \mu^2 \phi = 0 \qquad \text{(classical EoM)}$$

- BH domination at first, no self gravity
- Nonrotating black hole
- → Schwarzschild metric

Hairy solutions

$$\phi \to e^{-i\omega t} Y_{I,m} \phi(r), \qquad \omega = \mu, \quad V_I = r_{BH} \mu^2 r^3 - I(I+1)r(r-r_{BH})$$

$$r(r-r_{BH}) \frac{\mathrm{d}}{\mathrm{d}r} \left(r(r-r_{BH}) \frac{\mathrm{d}\phi}{\mathrm{d}r} \right) + V_I(r)\phi = 0$$

Hairy solutions

$$\phi \to e^{-i\omega t} Y_{l,m} \phi(r), \qquad \omega = \mu, \quad V_l = r_{BH} \mu^2 r^3 - l(l+1)r(r - r_{BH})$$
$$r(r - r_{BH}) \frac{\mathrm{d}}{\mathrm{d}r} \left(r(r - r_{BH}) \frac{\mathrm{d}\phi}{\mathrm{d}r} \right) + V_l(r) \phi = 0$$

Near horizon limit (numerically hard)

Far field

Local WKB

Hairy solutions

$$\phi \to e^{-i\omega t} Y_{l,m} \phi(r), \qquad \omega = \mu, \quad V_l = r_{BH} \mu^2 r^3 - l(l+1)r(r - r_{BH})$$
$$r(r - r_{BH}) \frac{\mathrm{d}}{\mathrm{d}r} \left(r(r - r_{BH}) \frac{\mathrm{d}\phi}{\mathrm{d}r} \right) + V_l(r)\phi = 0$$

Far field

Local WKB

Can they be 'glued'?

l = 0 in [Hui '19]

Global WKB

$$r_{SgrA^*} \simeq 10^7 \mathrm{km} \simeq 10^{17} \mathrm{eV}^{-1}$$

$$(r-r_{BH})^{-i\mu r_{BH}}\longleftrightarrow rac{1}{r^{3/4}}\mathrm{e}^{-2i\mu\sqrt{r_{BH}r}}\ |\phi_I|\propto V_I^{-1/4}(r)$$

1	0	1	2
μ r _{BH} \gtrsim	0.3	0.7	1.2

Impose causal infalling b.c. at horizon (Nontrivial implications: Love numbers, no hair thms.)

Global WKB

$$r_{SgrA^*} \simeq 10^7 \mathrm{km} \simeq 10^{17} \mathrm{eV}^{-1}$$

$$(r-r_{BH})^{-i\mu r_{BH}}\longleftrightarrow rac{1}{r^{3/4}}e^{-2i\mu\sqrt{r_{BH}r}}\ |\phi_I|\propto V_I^{-1/4}(r)$$

1	0	1	2
μ r _{BH} \gtrsim	0.3	0.7	1.2

Impose causal infalling b.c. a horizon (Nontrivial implications: Love numbers, no hair thms.)

Small μr_{BH} ?

$$1+\mu^2 \qquad \mu^{-2}$$

$$l=1$$

$$\mathcal{O}(\mu r_{BH})^{rac{3}{2}+2I} ~\sim (\mu r_{BH})^{rac{3}{2}+2I} r^I ~\sim rac{1}{r^{3/4}} \cos(2\mu \sqrt{r_{BH}r})$$

 $\mathcal{O}(1)$ variations in the density profile

- √ Solution for all distances
- √ Analytic control (causality)
- $\checkmark~\mu~{\rm dependence}$
- $\checkmark |\phi_{\infty}/\phi_{hor.}|$

- √ Solution for all distances
- √ Analytic control (causality)
- $\checkmark~\mu~{\rm dependence}$
- $\checkmark |\phi_{\infty}/\phi_{hor.}|$

 $\omega < \mu$ allowed, but needs $Im[\omega] < 0 \rightarrow e^{-Im[\omega]t}$ decay!

Soliton (bound state). [Schive et al. 2014]

Solitons

$M_s \simeq 10^9 M_{\odot} \propto M_{halo}^{1/3}(?)$

Solitons

$$M_s \simeq 10^9 M_{\odot} \propto M_{halo}^{1/3}(?)$$

Aim to

- Soliton domination
- Solution at all distances
- Causal boundary conditions
- GR gravity close to the horizon
- No non-relativistic approximation

$$\alpha\phi_c + (1-\alpha)\phi_{n.c}$$

- Large μr_{BH} : b.c. important at large distances
- Small μr_{BH} : b.c. important only $\sim r_{BH}$ away, but maybe this is already outside the sphere of influence of the BH!

$$I = 0^1, \qquad
abla^2 \Phi_N = -4\pi G
ho$$
 $V o V - 2\mu^2 r^4 \Phi_N + (\omega^2 - \mu^2) r^4$

¹Instabilities at l > 0 (?) [Dmitriev '21]

Sketch: given Φ_N , compute ϕ in WKB \rightarrow compute ρ, Φ_N

$$r_{BH} \simeq 10^7 \mathrm{km}, \; r_e \simeq 10^{13} \mathrm{km} \simeq 1 \mathrm{pc}$$
 $r_{S} \sim r_{MilkyWay} \sim r_{halo} \sim r_s \simeq 10^{15} \mathrm{km}, \; r_{M.W.} \simeq 10^{17} \mathrm{km}$

$$r_s = rac{1}{\mu^2 G M_s}, \; r_{n.l.} = r_s rac{M_{BH}}{M_s}, \;\;\; \Delta M_s / M_s \simeq 10^{-8} \; {
m in} \; 10^{10} {
m y} \propto (rac{r_{BH}}{r_s})^2 rac{1}{r_s}$$

Bar, Blas, Blum, Sibiryakov

Stability is crucial! It selects small μr_{BH}

$$GM_s \ll r_s o GM_s \ll rac{1}{\mu^2 GM_s} o \mu GM_s \ll 1$$
 $\longrightarrow \mu r_{BH} \ll rac{M_{BH}}{M_s} \ll 1$

The hierarchy of scales makes boundary conditions unimportant at large distances

$$r_s \gg GM_s \rightarrow r_{n.l.} \gg GM_s \frac{M_{BH}}{M_s} = r_{BH}$$

GR corrections far away are small or the soliton is unstable.

For $M_{BH} > M_s$ the known result $GM_{BH}r_s\mu^2 \simeq \mathcal{O}(1)$ gives

$$\mu r_{BH} \ll \sqrt{\frac{M_{BH}}{M_s}}$$

Conclusions

Hairy black hole:

- √ evade no-hair theorems
- $\checkmark \rho(r)$ for spinning DM
- \triangle boundary conditions significant when $\mu r_{BH} \gtrsim \mathcal{O}(1)$

Soliton:

- $\checkmark \rho(r)$, with self-gravity
- √ b.c unimportant in soliton domination
- \checkmark b.c unimportant in BH domination, small μr_{BH}
- \triangle b.c. significant when $M_{BH} > M_s$ and $\mu r_{BH} \gtrsim \mathcal{O}(1)$

For
$$\mathit{SgrA}^*$$
: $M_s \lesssim 10^7 M_{\odot}$, $\mu \gtrsim 10^{-17} \mathrm{eV}$

Future directions

Include self interactions. Consider more scalars