Quantum Fluids in the Universe - ISAPP

Positivity Bounds for Effective Field Theories With Spontaneously Broken Lorentz Invariance

SISSA, Trieste

Friday 09/06/2023

Alessandro Longo Phd in Astroparticle Physics

Outline

• Positivity Bounds for EFTs with Spontaneous Breaking of Lorentz Invariance with Paolo Creminelli, Leonardo Senatore, Matteo Delladio, Oliver Janssen

Outline

• Positivity Bounds for EFTs with Spontaneous Breaking of Lorentz Invariance with Paolo Creminelli, Leonardo Senatore, Matteo Delladio, Oliver Janssen

• Backreaction Mechanism in Ghost-Free Massive Gravity with Miguel Zumalacarregui, Giovanni Tambalo, Lavinia Heisenberg

Positivity Bounds for EFTs with SSB of LI

Alessandro Longo

 $\mathscr{L}_{EFT} = \frac{1}{2} \partial_{\mu} \pi \partial^{\mu} \pi + \frac{c_3}{\Lambda^4} (\partial_{\mu} \pi \partial^{\mu} \pi)^2 + \dots$

Positivity Bounds for EFTs with SSB of LI

$$\mathscr{L}_{EFT} = \frac{1}{2} \partial_{\mu} \pi \partial^{\mu}$$

The linearized field equation for fluctuations $\phi = \pi - \pi_0$ about the non trivial background $\partial_\mu \pi_0 = C_\mu$ is

Positivity Bounds for EFTs with SSB of LI

 $^{\mu}\pi + \frac{c_3}{\Lambda^4} (\partial_{\mu}\pi\partial^{\mu}\pi)^2 + \dots$

$$\mathscr{L}_{EFT} = \frac{1}{2} \partial_{\mu} \pi \partial^{\mu} \pi + \frac{c_3}{\Lambda^4} (\partial_{\mu} \pi \partial^{\mu} \pi)^2 + \dots$$

The linearized field equation for fluctuations $\phi = \pi - \pi_0$ about the non trivial background $\partial_\mu \pi_0 = C_\mu$ is

 $[\eta_{\mu\nu} + 4\frac{c_3}{\Lambda^4}C_{\mu}C_{\nu} + \dots]\partial_{\mu}\partial_{\nu}\phi = 0$

Positivity Bounds for EFTs with SSB of LI

$$\mathscr{L}_{EFT} = \frac{1}{2} \partial_{\mu} \pi \partial^{\mu}$$

The linearized field equation for fluctuations $\phi=\pi-\pi_0$ about the non trivial background $\partial_\mu\pi_0=C_\mu$ is

Positivity Bounds for EFTs with SSB of LI

 $^{\mu}\pi + \frac{c_3}{\Lambda^4} (\partial_{\mu}\pi\partial^{\mu}\pi)^2 + \dots$

$$\mathscr{L}_{EFT} = \frac{1}{2} \partial_{\mu} \pi \partial^{\mu} \pi + \frac{c_3}{\Lambda^4} (\partial_{\mu} \pi \partial^{\mu} \pi)^2 + \dots$$

The linearized field equation for fluctuations $\phi = \pi - \pi_0$ about the non trivial background $\partial_\mu \pi_0 = C_\mu$ is

$$k_{\mu}k^{\mu} + 4$$

Positivity Bounds for EFTs with SSB of LI

$$\mathscr{L}_{EFT} = \frac{1}{2} \partial_{\mu} \pi \partial^{\mu} \pi + \frac{c_3}{\Lambda^4} (\partial_{\mu} \pi \partial^{\mu} \pi)^2 + \dots$$

The linearized field equation for fluctuations $\phi = \pi - \pi_0$ about the non trivial background $\partial_\mu \pi_0 = C_\mu$ is

$$k_{\mu}k^{\mu} + 4$$

Positivity Bounds for EFTs with SSB of LI

$$\mathscr{L}_{EFT} = \frac{1}{2} \partial_{\mu} \pi \partial^{\mu} \pi + \frac{c_3}{\Lambda^4} (\partial_{\mu} \pi \partial^{\mu} \pi)^2 + \dots$$

The linearized field equation for fluctuations $\phi = \pi - \pi_0$ about the non trivial background $\partial_\mu \pi_0 = C_\mu$ is

$$k_{\mu}k^{\mu} + 4$$

The Wilson coefficients of an Effective Field Theory are not entirely free. Their signs determine the presence/absence of superluminal propagation about non trivial backgrounds

Positivity Bounds for EFTs with SSB of LI

Positivity Bounds for EFTs with SSB of LI

A. Adams et al. (2006): If an EFT admits a standard UV completion, then it satisfies Positivity Bounds

 \mathscr{L}_{EFT}

- Local - Lorentz Invariant

Positivity Bounds for EFTs with SSB of LI

A. Adams et al. (2006): If an EFT admits a standard UV completion, then it satisfies Positivity Bounds

A. Adams et al. (2006): If an EFT admits a standard UV completion, then it satisfies Positivity Bounds

 \mathscr{L}_{EFT}

- Local - Lorentz Invariant

Positivity Bounds for EFTs with SSB of LI

 \mathcal{L}_{UV}

- Local
- Lorentz Invariant
- Unitary
- Usual Analiticity of S-Matrix

A. Adams et al. (2006): If an EFT admits a standard UV completion, then it satisfies Positivity Bounds

 \mathscr{L}_{EFT}

- Local Local
Lorentz Invariant

Positivity Bounds for EFTs with SSB of LI

 $\mathscr{L}_{EFT} \stackrel{?}{=} \lim_{\text{Low Energy}} \mathscr{L}_{UV}$

 \mathcal{L}_{UV}

- Local

- Lorentz InvariantUnitaryUsual Analiticity of S-Matrix

A. Adams et al. (2006): If an EFT admits a standard UV completion, then it satisfies Positivity Bounds

 \mathscr{L}_{EFT}

- Local Lorentz Invariant How to connect them?

Positivity Bounds for EFTs with SSB of LI

 $\mathscr{L}_{EFT} \stackrel{?}{=} \lim_{\text{Low Energy}} \mathscr{L}_{UV}$

- Local

- Lorentz Invariant
- Unitary
- Usual Analiticity of S-Matrix

A. Adams et al. (2006): If an EFT admits a standard UV completion, then it satisfies Positivity Bounds

 \mathscr{L}_{EFT}

- Local Lorentz Invariant

- S-Matrix

Positivity Bounds for EFTs with SSB of LI

 $\mathscr{L}_{EFT} \stackrel{?}{=} \lim_{\text{Low Energy}} \mathscr{L}_{UV}$

- Conserved Currents

- Other "bridge" operators?

 \mathcal{L}_{UV}

- Local

- Lorentz Invariant
- Unitary
- Usual Analiticity of S-Matrix

$$\mathscr{L}_{EFT} = \frac{1}{2} \partial_{\mu} \pi \partial^{\mu}$$

A stronger bound is obtained studying the $\pi\pi \to \pi\pi$ scattering

IR amplitude in the forward limit:

$$A_{\pi\pi\to\pi\pi}(s) = \frac{2c_3}{\Lambda^4}s^2$$

Positivity Bounds for EFTs with SSB of LI

$^{\mu}\pi + \frac{c_3}{\Lambda^4} (\partial_{\mu}\pi\partial^{\mu}\pi)^2 + \dots$ The analytic S-matrix provides a link between IR and the UV physics

Positivity Bounds for EFTs with SSB of LI

Alessandro Longo

"Cosmological" Positivity Bounds:

Positivity Bounds for EFTs with SSB of LI

Alessandro Longo

"Cosmological" Positivity Bounds: - Theoretical Priors for parameters estimation (i.e. EFT of Inflation and DE)

Positivity Bounds for EFTs with SSB of LI

"Cosmological" Positivity Bounds: - Theoretical Priors for parameters estimation (i.e. EFT of Inflation and DE)

-Robustness tests for "Minkowskian" bounds on "unconventional" EFTs (i.e. Galileons)

"Cosmological" Positivity Bounds: - Theoretical Priors for parameters estimation (i.e. EFT of Inflation and DE)

-Robustness tests for "Minkowskian" bounds on "unconventional" EFTs (i.e. Galileons)

Typical Cosmological and Condensed Matter setups are characterized by Sponaneous **Breaking of Lorentz Invariance**

"Cosmological" Positivity Bounds: - Theoretical Priors for parameters estimation (i.e. EFT of Inflation and DE)

-Robustness tests for "Minkowskian" bounds on "unconventional" EFTs (i.e. Galileons)

Typical Cosmological and Condensed Matter setups are characterized by Sponaneous **Breaking of Lorentz Invariance**

- No guarantee that the EFT can be extrapolated to a Lorentz-invariant UV theory (i.e. perturbations of a fluid)

No clear connection between UV and IR physics

Creminelli et al (2022): look at correlation functions of conserved currents

Creminelli et al (2022): look at correlation functions of conserved currents

$$\tilde{G}_{Ret}^{\mu\nu}(p) = \int_{x \in FLC} d^4 x e^{-ip}$$

Positivity Bounds for EFTs with SSB of LI

$i^{p \cdot x} i \theta(x^0) < 0 \left[\left[J^{\mu}(x), J^{\nu}(0) \right] \right] 0 > 0$

Creminelli et al (2022): look at correlation functions of conserved currents

$$\tilde{G}_{Ret}^{\mu\nu}(p) = \int_{x \in FLC} d^4 x e^{-ip}$$

IR behavior

-Explicit computation

Positivity Bounds for EFTs with SSB of LI

$i^{p \cdot x} i\theta(x^0) < 0 | [J^{\mu}(x), J^{\nu}(0)] | 0 > 0$

Creminelli et al (2022): look at correlation functions of conserved currents

$$\tilde{G}_{Ret}^{\mu\nu}(p) = \int_{x \in FLC} d^4 x e^{-ip}$$

IR behavior

-Explicit computation

Positivity Bounds for EFTs with SSB of LI

$i^{p \cdot x} i \theta(x^0) < 0 | [J^{\mu}(x), J^{\nu}(0)] | 0 > 0$

UV behavior

-Fixed by assumption of Unitary CFT completion

Creminelli et al (2022): look at correlation functions of conserved currents

$$\tilde{G}_{Ret}^{\mu\nu}(p) = \int_{x \in FLC} d^4 x e^{-ip}$$

IR behavior

-Explicit computation

Correlation functions of conserved currents provide a link between IR and UV physics

Positivity Bounds for EFTs with SSB of LI

$\int e^{y \cdot x} i\theta(x^0) < 0 \left[\left[J^{\mu}(x), J^{\nu}(0) \right] \right] 0 > 0$

UV behavior

-Fixed by assumption of Unitary CFT completion

Positivity Bounds for EFTs with SSB of LI

$\pi\pi ightarrow \pi\pi$ scattering on time-dependent background

$$\mathcal{L} = \frac{1}{2}X + c_4 \frac{X^2}{\Lambda^4} + c_6 \frac{X^3}{\Lambda^8} + c_8 \frac{X^4}{\Lambda^{12}}$$

Positivity Bounds for EFTs with SSB of LI

$\pi\pi ightarrow \pi\pi$ scattering on time-dependent background

$$X = \partial_{\mu}\theta\partial^{\mu}\theta$$
$$\theta = \mu t + \pi$$

$$\mathcal{L} = \frac{1}{2}X + c_4 \frac{X^2}{\Lambda^4} + c_6 \frac{X^3}{\Lambda^8} + c_8 \frac{X^4}{\Lambda^{12}}$$

Positivity Bounds for EFTs with SSB of LI

$\pi\pi ightarrow \pi\pi$ scattering on time-dependent background

$$X = \partial_{\mu}\theta\partial^{\mu}\theta$$
$$\theta = \mu t + \pi$$

$$\mathscr{L} = \frac{1}{2}X + c_4$$

The presence of a time-dependent background makes the amplitude sensitive to these operators (not only through corrections so π 's dispersion relation)

Positivity Bounds for EFTs with SSB of LI

$\pi\pi \to \pi\pi$ scattering on time-dependent background

Alessandro Longo

$$X = \partial_{\mu}\theta\partial^{\mu}\theta$$
$$\theta = \mu t + \pi$$

$$\mathscr{L} = \frac{1}{2}X + c_4$$

The presence of a time-dependent background makes the amplitude sensitive to these operators (not only through corrections so π 's dispersion relation)

"Fully forward" configuration ($\cos \phi_{q,p} \approx 1$) enhances the contribution of c_6 and c_8

Positivity Bounds for EFTs with SSB of LI

$\pi\pi \to \pi\pi$ scattering on time-dependent background

Alessandro Longo

Positivity Bounds for EFTs with SSB of LI

Obstruction: analytic structure of the amplitude is deeply modified

The core of the problem lies in the modified dispersion relation of π :

Positivity Bounds for EFTs with SSB of LI

Obstruction: analytic structure of the amplitude is deeply modified

The core of the problem lies in the modified dispersion relation of π :

$$(\omega^2 - \vec{k}^2)(\omega^2 - \vec{k}^2 - m_{\rho}^2) - 4\mu^2\omega^2 = 0$$

Positivity Bounds for EFTs with SSB of LI

Obstruction: analytic structure of the amplitude is deeply modified

The core of the problem lies in the modified dispersion relation of π :

$$(\omega^{2} - \vec{k}^{2})(\omega^{2} - \vec{k}^{2} - m_{\rho}^{2}) - 4\mu^{2}\omega^{2} = 0$$

$$\int_{\vec{k}} \sqrt{m_{\rho}^{2} - \frac{m_{rho}^{2}}{2} + \frac{\sqrt{m_{\rho}^{4} + 16\mu^{2}\omega^{2}}}{2}}$$

Positivity Bounds for EFTs with SSB of LI

Obstruction: analytic structure of the amplitude is deeply modified

The core of the problem lies in the modified dispersion relation of π :

Positivity Bounds for EFTs with SSB of LI

Obstruction: analytic structure of the amplitude is deeply modified

Extra non-analyticities in ω

The core of the problem lies in the modified dispersion relation of π :

Positivity Bounds for EFTs with SSB of LI

Obstruction: analytic structure of the amplitude is deeply modified

- cuts on the imaginary ω axis appear non-perturbatively

Extra non-analyticities in ω

The core of the problem lies in the modified dispersion relation of π :

Positivity Bounds for EFTs with SSB of LI

Obstruction: analytic structure of the amplitude is deeply modified

- cuts on the imaginary ω axis appear non-perturbatively

- in general, it is not possible to neglect the contribution from the circle

Extra non-analyticities in ω

Obstruction: analytic structure of the amplitude is deeply modified

The core of the problem lies in the modified dispersion relation of π :

Positivity Bounds for EFTs with SSB of LI

- cuts on the imaginary ω axis appear non-perturbatively

- in general, it is not possible to neglect the contribution from the circle

xtra non-analyticities in ω

Solution (?): $\pi\gamma \to \pi\gamma$ scattering at LO in the e.m. coupling

Positivity Bounds for EFTs with SSB of LI

Solution (?): $\pi\gamma \to \pi\gamma$ scattering at LO in the e.m. coupling

Pros: - corrections to γ 's dispersion relations are of order g^2

Positivity Bounds for EFTs with SSB of LI

Solution (?): $\pi\gamma \to \pi\gamma$ scattering at LO in the e.m. coupling

Pros: - corrections to γ 's dispersion relations are of order g^2

Positivity Bounds for EFTs with SSB of LI

Solution (?): $\pi\gamma \to \pi\gamma$ scattering at LO in the e.m. coupling

No troubles with analyticity

Pros: - corrections to γ 's dispersion relations are of order g^2

Cons: - two extra derivatives acting on photons are needed

Positivity Bounds for EFTs with SSB of LI

Solution (?): $\pi\gamma \to \pi\gamma$ scattering at LO in the e.m. coupling

No troubles with analyticity

Pros: - corrections to γ 's dispersion relations are of order g^2

Cons: - two extra derivatives acting on photons are needed

Positivity Bounds for EFTs with SSB of LI

Solution (?): $\pi\gamma \rightarrow \pi\gamma$ scattering at LO in the e.m. coupling

Pros: - corrections to γ 's dispersion relations are of order g^2

Cons: - two extra derivatives acting on photons are needed

- ambiguity in the gauging prescription

Positivity Bounds for EFTs with SSB of LI

Solution (?): $\pi\gamma \rightarrow \pi\gamma$ scattering at LO in the e.m. coupling

Pros: - corrections to γ 's dispersion relations are of order g^2

Cons: - two extra derivatives acting on photons are needed

- ambiguity in the gauging prescription

Positivity Bounds for EFTs with SSB of LI

Pros: - corrections to γ 's dispersion relations are of order g^2

Cons: - two extra derivatives acting on photons are needed

- ambiguity in the gauging prescription

Result: bounds for a theory of a gauged shift symmetric scalar

Positivity Bounds for EFTs with SSB of LI

Pros: - corrections to γ 's dispersion relations are of order g^2

Cons: - two extra derivatives acting on photons are needed

- ambiguity in the gauging prescription

Positivity Bounds for EFTs with SSB of LI

Positivity Bounds for EFTs with SSB of LI

Summing up

Conclusions

- EFT's coefficients are not arbitrary. "Healthy" theories obey Positivity Bounds

"Minkowskian" bounds

- S-matrix not necessarily well defined at arbitrarily high energies due to SSB of Lorentz Invariance

- Lorentz breaking as tool to extract information from h.d.o. in some specific kinematical regimes

Positivity Bounds for EFTs with SSB of LI

- "Cosmological" Positivity Bounds provide useful theoretical priors and robustness tests of already existing

Backreaction Mechanism in Ghost-Free Massive Gravity

Positivity Bounds for EFTs with SSB of LI

Motivations:

Positivity Bounds for EFTs with SSB of LI

Motivations: - natural extension, from field theory perspective

Positivity Bounds for EFTs with SSB of LI

Motivations:

- natural extension, from field theory perspective
- small CC \sim small mass (technically natural)

Positivity Bounds for EFTs with SSB of LI

Motivations: - natural extension, from field theory perspective - small CC \sim small mass (technically natural)

Starting point: massive Fierz-Pauli
$$\mathcal{K}_h = -\frac{1}{4}h^{ab}\mathcal{E}^{cd}_{ab}h_{cd} - \frac{1}{8}m^2(h_{ab}h^{ab} - \alpha h^2)$$

Positivity Bounds for EFTs with SSB of LI

Motivations: - natural extension, from field theory perspective - small CC \sim small mass (technically natural)

Starting point: massive Fierz-Pauli
$$\mathcal{K}_h = -\frac{1}{4}h^{ab}\mathcal{E}^{cd}_{ab}h_{cd} - \frac{1}{8}m^2(h_{ab}h^{ab} - \alpha h^2)$$

Positivity Bounds for EFTs with SSB of LI

Technical challenges:

Motivations: - natural extension, from field theory perspective - small CC \sim small mass (technically natural)

Starting point: massive Fierz-Pauli

$$\mathcal{K}_h = -\frac{1}{4}h^{ab}\mathcal{E}^{cd}_{ab}h_{cd} - \frac{1}{8}m^2(h_{ab}h^{ab} - \alpha h^2)$$

Propagator Discontinuity

The massless propagator is not recovered in the $m \rightarrow 0$ limit

Positivity Bounds for EFTs with SSB of LI

Technical challenges:

Motivations: - natural extension, from field theory perspective - small CC \sim small mass (technically natural)

Starting point: massive Fierz-Pauli $\mathcal{K}_h = -rac{1}{4}h^{ab}\mathcal{E}_{ab}^{cd}$

Technical challenges:

Propagator Discontinuity

The massless propagator is not recovered in the $m \rightarrow 0$ limit

Solutions:

Positivity Bounds for EFTs with SSB of LI

$${}^d_b h_{cd} - \frac{1}{8} m^2 (h_{ab} h^{ab} - \alpha h^2)$$

BD Ghost

A ghost dof rides on top of the helicity-0 mode π

Motivations: - natural extension, from field theory perspective - small CC \sim small mass (technically natural)

Starting point: massive Fierz-Pauli $\mathcal{K}_h = -rac{1}{4}h^{ab}\mathcal{E}_{ab}^{cd}$

Technical challenges:

Propagator Discontinuity

The massless propagator is not recovered in the $m \rightarrow 0$ limit

Include nonlinear interactions and get a fully diffs invariant Lagrangian

Positivity Bounds for EFTs with SSB of LI

$${}^d_b h_{cd} - \frac{1}{8} m^2 (h_{ab} h^{ab} - \alpha h^2)$$

BD Ghost

A ghost dof rides on top of the helicity-0 mode π

Solutions:

Motivations: - natural extension, from field theory perspective - small CC \sim small mass (technically natural)

Starting point: massive Fierz-Pauli $\mathcal{K}_h = -\frac{1}{\Delta}h^{ab}\mathcal{E}_{ab}^{cd}$

Technical challenges:

Propagator Discontinuity

The massless propagator is not recovered in the $m \rightarrow 0$ limit

Include nonlinear interactions and get a fully diffs invariant Lagrangian

Positivity Bounds for EFTs with SSB of LI

$${}^d_b h_{cd} - \frac{1}{8} m^2 (h_{ab} h^{ab} - \alpha h^2)$$

BD Ghost

A ghost dof rides on top of the helicity-0 mode π

Solutions:

Clever structure of the potential s.t. all higher derivatives operators $(\partial^2 \pi)^n$ are total derivatives

Alessandro Longo

Positivity Bounds for EFTs with SSB of LI

$$\sqrt{-g} \left(R[g] - \mathcal{U}[g, f] \right)$$

Fundamental building-block $\mathcal{K}^a_b \equiv \delta^a_b - \left(\sqrt{g^{-1}f}\right)^a_{\mu}$

$$\det \left[\frac{\delta \mathcal{L}_{dRGT}}{\delta \dot{\phi}^a \delta \dot{\phi}^b} \right] = 0$$

No ghost instabilities

dRGT graviton propagates 5 dofs

Alessandro Longo

The Problem

Positivity Bounds for EFTs with SSB of LI

The Problem

Positivity Bounds for EFTs with SSB of LI

The Problem

$$(\dot{a} - \sqrt{|k|}N)\left(3 - \frac{2\sqrt{|k|}f}{a}\right) = 0$$

- $k = 0 \rightarrow No$ dynamical flat FLRW
- $k \neq 0 \rightarrow$ Curved FLRW does exist

Positivity Bounds for EFTs with SSB of LI

The Problem

$$(\dot{a} - \sqrt{|k|}N)\left(3 - \frac{2\sqrt{|k|}f}{a}\right) = 0$$

• $k = 0 \rightarrow No$ dynamical flat FLRW

• $k \neq 0 \rightarrow$ Curved FLRW does exist

Too much symmetry overconstrains the system

Positivity Bounds for EFTs with SSB of LI

The Problem

$$(\dot{a} - \sqrt{|k|}N)\left(3 - \frac{2\sqrt{|k|}f}{a}\right) = 0$$

• $k = 0 \rightarrow No$ dynamical flat FLRW

• $k \neq 0 \rightarrow$ Curved FLRW does exist

Too much symmetry overconstrains the system

Open FLRW solutions are unstable

Positivity Bounds for EFTs with SSB of LI

The Problem

$$(\dot{a} - \sqrt{|k|}N)\left(3 - \frac{2\sqrt{|k|}f}{a}\right) = 0$$

• $k = 0 \rightarrow No$ dynamical flat FLRW

• $k \neq 0 \rightarrow$ Curved FLRW does exist

Too much symmetry overconstrains the system

Open FLRW solutions are unstable

Positivity Bounds for EFTs with SSB of LI

The Solution (?)

The Problem

$$(\dot{a} - \sqrt{|k|}N)\left(3 - \frac{2\sqrt{|k|}f}{a}\right) = 0$$

• $k = 0 \rightarrow No$ dynamical flat FLRW

• $k \neq 0 \rightarrow$ Curved FLRW does exist

Too much symmetry overconstrains the system

Open FLRW solutions are unstable

Positivity Bounds for EFTs with SSB of LI

The Solution (?)

Large Scales: Homogeneity + Isotropy

Ghost-Free Massive Gravity

The Problem

$$(\dot{a} - \sqrt{|k|}N)\left(3 - \frac{2\sqrt{|k|}f}{a}\right) = 0$$

• $k = 0 \rightarrow No$ dynamical flat FLRW

• $k \neq 0 \rightarrow$ Curved FLRW does exist

Too much symmetry overconstrains the system

Open FLRW solutions are unstable

Positivity Bounds for EFTs with SSB of LI

The Solution (?)

Large Scales: Homogeneity + Isotropy

Small Scales: Nonlinear structures

Ghost-Free Massive Gravity

The Problem

$$(\dot{a} - \sqrt{|k|}N)\left(3 - \frac{2\sqrt{|k|}f}{a}\right) = 0$$

• $k = 0 \rightarrow No$ dynamical flat FLRW

• $k \neq 0 \rightarrow$ Curved FLRW does exist

Too much symmetry overconstrains the system

Open FLRW solutions are unstable

Positivity Bounds for EFTs with SSB of LI

The Solution (?)

Ghost-Free Massive Gravity

The Problem

$$(\dot{a} - \sqrt{|k|}N)\left(3 - \frac{2\sqrt{|k|}f}{a}\right) = 0$$

• $k = 0 \rightarrow No$ dynamical flat FLRW

• $k \neq 0 \rightarrow$ Curved FLRW does exist

Too much symmetry overconstrains the system

Open FLRW solutions are unstable

Positivity Bounds for EFTs with SSB of LI

The Solution (?)

How to define an average?

Positivity Bounds for EFTs with SSB of LI

How to define an average?

$$\partial^2 \phi + \mathcal{O}(\phi, \phi) + \ldots = 0$$

Positivity Bounds for EFTs with SSB of LI

How to define an average?

$$\partial^2 \phi + \mathcal{O}$$

Smoothing the evolution equation introduces extra sources for the long-wavelength modes ϕ_l

 $\partial^2 \phi_l + \mathcal{O}(\phi_l, \phi_l) + [\mathcal{O}(\phi_s)]$

Positivity Bounds for EFTs with SSB of LI

 $\mathcal{O}(\phi,\phi)+\ldots=0$

$$[\phi_s, \phi_s)]_{\Lambda} + o\left(\frac{\partial^2}{\Lambda^2}\right) + [\ldots]_{\Lambda} = 0$$

How to define an average?

$$\partial^{2} \phi + \mathcal{O}(\phi, \phi) + \dots = 0$$

$$\phi_{l}(t, x) \equiv \int d^{3}x' W_{\Lambda}(|x - x'|) \phi(t) dx$$

$$= 1 \text{ sources for the long-wavelength modes}$$

$$\Phi_{l}(t, x) \equiv \int d^{3}x' W_{\Lambda}(|x - x'|) \phi(t) dx$$

$$= 1 \text{ for the long-wavelength modes}$$

$$\Phi_{l}(t, x) \equiv \int d^{3}x' W_{\Lambda}(|x - x'|) \phi(t) dx$$

$$\Phi_{l}(t, x) \equiv \int d^{3}x' W_{\Lambda}(|x - x'|) \phi(t) dx$$

Smoothing the evolution equation introduces extra sources

 $\partial^2 \phi_l + \mathcal{O}(\phi_l, \phi_l) + [\mathcal{O}(\phi_s)]$

Positivity Bounds for EFTs with SSB of LI

How to define an average?

$$\frac{\partial^2 \phi + \mathcal{O}(\phi, \phi) + \ldots = 0}{\phi_l(t, x) \equiv \int d^3 x' W_{\Lambda}(|x - x'|) \phi(t, x)} = \int d^3 x' W_{\Lambda}(|x - x'|) \phi(t, x)$$
The sources for the long-wavelength modes $\mathcal{O}_{\mathcal{O}}$

$$+ [\mathcal{O}(\phi_s, \phi_s)]_{\Lambda} + o\left(\frac{\partial^2}{\Lambda^2}\right) + [\ldots]_{\Lambda} = 0$$

Smoothing the evolution equation introduces extra sources

 $\partial^2 \phi_l + \mathcal{O}(\phi_l, \phi_l)$

Same evolution operator

Positivity Bounds for EFTs with SSB of LI

How to define an average?

$$\partial^{2}\phi + \mathcal{O}(\phi, \phi) + \dots = 0$$

$$\phi_{l}(t, x) \equiv \int d^{3}x' W_{\Lambda}(|x - x'|)\phi(t) dx' = \int d^{3}x' W_{\Lambda}(|x - x'|)\phi(t) dx' = 0$$

$$f(\phi_{s}, \phi_{s})]_{\Lambda} + o\left(\frac{\partial^{2}}{\Lambda^{2}}\right) + [\dots]_{\Lambda} = 0$$

Smoothing the evolution equation introduces extra

 $\partial^2 \phi_l + \mathcal{O}(\phi_l, \phi_l)$

Same evolution operator

Averaged inhomogeneities appear in brackets as extra sources after smoothing of equations

Positivity Bounds for EFTs with SSB of LI

Basic ingredients:

Positivity Bounds for EFTs with SSB of LI

Basic ingredients:

 $g_{\mu\nu} = \psi^2 \eta_{\mu\nu}$

Conformally flat metric

Positivity Bounds for EFTs with SSB of LI

 $g_{\mu\nu} = \psi^2 \eta_{\mu\nu} \qquad \left(X^2 \right)^{\mu}_{\nu} \equiv g^{\mu\rho} \tilde{f}_{\rho\nu} = \begin{vmatrix} \Omega \\ a V^i \end{vmatrix}$

Conformally flat metric

A Monster

Positivity Bounds for EFTs with SSB of LI

Basic ingredients:

$$\Omega \quad V_j^{-}$$
$$uV^i \quad Z_j^i$$

 $g_{\mu\nu} = \psi^2 \eta_{\mu\nu} \qquad \left(X^2\right)^{\mu}_{\nu} \equiv g^{\mu\rho} \tilde{f}_{\rho\nu} = \begin{vmatrix} \Omega & V_j \\ aV^i & Z_j^i \end{vmatrix}$

Conformally flat metric

A Monster

Positivity Bounds for EFTs with SSB of LI

Basic ingredients:

$\mathcal{U}_2 = 12 - 6[X] + [X]^2 - [X^2]$

A *minimal* potential

 $g_{\mu\nu} = \psi^2 \eta_{\mu\nu} \qquad (X^2)^{\mu}_{\nu} \equiv g^{\mu\rho} \tilde{f}_{\rho\nu} = \begin{vmatrix} \Omega & V_j \\ aV^i & Z_j^i \end{vmatrix} \qquad \mathcal{U}_2 = 12 - 6[X] + [X]^2 - [X^2]$

Conformally flat metric

A Monster

 $\begin{cases} \phi^0 = f + \pi^0 \\ \phi^i = bx^i + \pi^i \end{cases}$

Stuckelbergs expansion

Positivity Bounds for EFTs with SSB of LI

Basic ingredients:

A *minimal* potential

Conformally flat metric

 $g_{\mu\nu} = \psi^2 \eta_{\mu\nu} \qquad (X^2)^{\mu}_{\nu} \equiv g^{\mu\rho} \tilde{f}_{\rho\nu} = \begin{vmatrix} \Omega & V_j \\ aV^i & Z_j^i \end{vmatrix} \qquad \mathcal{U}_2 = 12 - 6[X] + [X]^2 - [X^2]$

A Monster

 $\begin{cases} \phi^0 = f + \pi^0 \\ \phi^i = bx^i + \pi^i \end{cases}$

Stuckelbergs expansion

Tasks:

Positivity Bounds for EFTs with SSB of LI

Basic ingredients:

A *minimal* potential

Conformally flat metric

A Monster

 $\begin{cases} \phi^0 = f + \pi^0 \\ \phi^i = bx^i + \pi^i \end{cases}$

Stuckelbergs expansion

Tasks:

Positivity Bounds for EFTs with SSB of LI

Basic ingredients:

$g_{\mu\nu} = \psi^2 \eta_{\mu\nu} \qquad (X^2)^{\mu}_{\nu} \equiv g^{\mu\rho} \tilde{f}_{\rho\nu} = \begin{vmatrix} \Omega & V_j \\ aV^i & Z_j^i \end{vmatrix} \qquad \mathcal{U}_2 = 12 - 6[X] + [X]^2 - [X^2]$

A *minimal* potential

- extract X at second order in π

Conformally flat metric

A Monster

 $\begin{cases} \phi^0 = f + \pi^0 \\ \phi^i = bx^i + \pi^i \end{cases}$

Stuckelbergs expansion

Positivity Bounds for EFTs with SSB of LI

Tasks: - extract X at second order in π

Basic ingredients:

$g_{\mu\nu} = \psi^2 \eta_{\mu\nu} \qquad (X^2)^{\mu}_{\nu} \equiv g^{\mu\rho} \tilde{f}_{\rho\nu} = \begin{vmatrix} \Omega & V_j \\ aV^i & Z_j^i \end{vmatrix} \qquad \mathcal{U}_2 = 12 - 6[X] + [X]^2 - [X^2]$

A *minimal* potential

- compute fields equations at second order in π

Conformally flat metric

A Monster

Tasks:

 $\begin{cases} \phi^0 = f + \pi^0 \\ \phi^i = bx^i + \pi^i \end{cases}$

Stuckelbergs expansion

Positivity Bounds for EFTs with SSB of LI

Basic ingredients:

$g_{\mu\nu} = \psi^2 \eta_{\mu\nu} \qquad (X^2)^{\mu}_{\nu} \equiv g^{\mu\rho} \tilde{f}_{\rho\nu} = \begin{vmatrix} \Omega & V_j \\ aV^i & Z_i^i \end{vmatrix} \qquad \mathcal{U}_2 = 12 - 6[X] + [X]^2 - [X^2]$

A *minimal* potential

- extract X at second order in π
- compute fields equations at second order in π
- smooth-out fields equations

Conformally flat metric

A Monster

Tasks:

 $\begin{cases} \phi^0 = f + \pi^0 \\ \phi^i = bx^i + \pi^i \end{cases}$

Stuckelbergs expansion

Positivity Bounds for EFTs with SSB of LI

Basic ingredients:

$g_{\mu\nu} = \psi^2 \eta_{\mu\nu} \qquad (X^2)^{\mu}_{\nu} \equiv g^{\mu\rho} \tilde{f}_{\rho\nu} = \begin{vmatrix} \Omega & V_j \\ aV^i & Z_i^i \end{vmatrix} \qquad \mathcal{U}_2 = 12 - 6[X] + [X]^2 - [X^2]$

A *minimal* potential

- extract X at second order in π
- compute fields equations at second order in π
- smooth-out fields equations
- get a dynamical evolution for ψ_1

The equations:

Positivity Bounds for EFTs with SSB of LI

Einstein's equations

$$G_{\mu\nu} - \frac{m^2}{2} Y_{\mu\nu} = \frac{T_{\mu\nu}}{M_P^2}$$

Positivity Bounds for EFTs with SSB of LI

The equations:

Einstein's equations

$$G_{\mu\nu} - \frac{m^2}{2} Y_{\mu\nu} = \frac{T_{\mu\nu}}{M_P^2}$$

Positivity Bounds for EFTs with SSB of LI

The equations:

Stuckelberg's equations

 $\nabla_{\mu}Y^{\mu}_{\nu}=0$

The equations:

Einstein's equations

 $Y^{\mu}_{\nu} = \frac{1}{2} \mathcal{U}_2 \delta^{\mu}_{\nu} + (3 - [X]) X^{\mu}_{\nu} + (X^2)^{\mu}_{\nu}$

Positivity Bounds for EFTs with SSB of LI

Stuckelberg's equations

The equations:

Einstein's equations

 $Y^{\mu}_{\nu} = \frac{1}{2} \mathcal{U}_2 \delta^{\mu}_{\nu} + (3 - [X]) X^{\mu}_{\nu} + (X^2)^{\mu}_{\nu}$

Positivity Bounds for EFTs with SSB of LI

Stuckelberg's equations

$[\nabla_{\mu}Y_{0}^{\mu}]_{\Lambda} = 0 \rightarrow 3\dot{f}(3\dot{\psi}_{l}\psi_{l} - 2\psi_{l}) + \mathscr{L}(\partial\pi_{l};\psi_{l},\dot{f}) + [\mathscr{Q}(\partial\pi_{s},\psi_{s};\psi_{l},\partial\pi_{l},\dot{f})]_{\Lambda} = 0$

 $\left[\partial \pi_s \partial \pi_s\right]_{\Lambda} \simeq \frac{\int d^3 p}{(2\pi)^3} K(p,k) P_m(p)$ Solving the above equations linearly in π_s and ψ_s yields $\pi_s(\rho_s; \psi_l, f)$:

Positivity Bounds for EFTs with SSB of LI

The equations:

Stuckelberg's equations

 $[\nabla_{\mu}Y_{0}^{\mu}]_{\Lambda} = 0 \rightarrow 3\dot{f}(3\dot{\psi}_{l}\psi_{l} - 2\psi_{l}) + \mathscr{L}(\partial\pi_{l};\psi_{l},\dot{f}) + [\mathscr{Q}(\partial\pi_{s},\psi_{s};\psi_{l},\partial\pi_{l},\dot{f})]_{\Lambda} = 0$

Positivity Bounds for EFTs with SSB of LI

Thank you

