
Gravitational Wave Observations: Exercises

Problem 1. Verify that the GW strain from a pair of 30M⊙ black holes, separated by a few
Schwarzschild radii, orbiting around each other at a frequency of 100Hz, and located 400Mpc
away, is of the order of 10−21. What is the GW luminosity (order of magnitude)?

Problem 2. Newtonian chirp. In this problem, we will compute the leading-order gravita-
tional waveform for an orbiting binary. This problem has been adapted from the textbook by
Creighton and Anderson.

Consider a binary of masses m1 and m2 in a circular orbit on the x-y plane so that the angular
momentum points along the z direction. Assume uniform circular motion, where the orbital
phase φ ≡ ωt increases uniformly with time t; ω ≡ 2πforb is the orbital angular frequency.
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(i) Show that the quadrupole tensor for this system, defined as Iij(t) ≡ ∫ xi xj ρ(t)d3x, where
ρ is the mass density, when computed in the centre-of-mass frame, evaluates to
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where µ ≡ m1m2/(m1 +m2) is the usual reduced mass of the system, and r12 is the separation
between the two masses.

(ii) The gravitational wave strain in the transverse traceless gauge is given by hTT
ij ≡ (2G/c

4dL)
¨̄Iij

at a distance dL from the source (in the radiation zone dL ≫ r12); here the overbar denotes the
trace-free part of a tensor. Note that when viewed from the z direction, the quadrupole tensor
Iij for this system is already transverse. Compute its second time derivative Ïij and note that
it is traceless. Evaluate the gravitational wave strain along the z axis (in the radiation zone).
Can you read off the two polarizations?

h+ = −
4Gµr212 ω

2

c4 dL
cos 2φ ,

h× = −
4Gµr212 ω

2

c4 dL
sin 2φ . (2)

Note that the gravitational-wave frequency is twice the orbital frequency, fGW = 2 forb. Why
would you expect this behaviour?
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(iii) In gravitational-wave literature, it is customary to rewrite the above expressions in terms
of the velocity parameter v ≡ r12 ω. For an observer not on the orbital axis, but at an angle of
inclination ι from the axis, the gravitational waveform is

h+ = −
2Gµ

c2 dL
(1 + cos2 ι) (

v

c
)
2

cos 2φ ,

h× = −
4Gµ

c2 dL
cos ι (

v

c
)
2

sin 2φ . (3)

Use Kepler’s third law to show that v can be related to the orbital separation as v =
√
GM/r12,

where M ≡ m1 +m2 is the total mass of the system. Also show that v can be related to the
gravitational-wave frequency as v = (πGMfGW)

1/3. Show that the total Newtonian energy of
the system is

E = −
1

2
µv2 . (4)

(iv) The gravitational-wave luminosity is given by,

LGW =
1

5

G

c5
⟨
...

Īij
...

Ī ij⟩ , (5)

where the angle brackets ⟨⋅⟩ denote a time average, and repeated indices are asummed to
be summed over (via the Einstein summation convention). Show that the gravitational-wave
luminosity from an orbiting binary is

LGW =
32

5

c5

G
η2 (

v

c
)
10

, (6)

where η ≡ µ/M is the symmetric mass ratio.

(v) The energy emitted in gravitational waves is lost from the Newtonian orbital energy of the
system. Using LGW = −dE/dt, show that system collapses in a finite time. Find an expression
for the frequency evolution of the system. You should obtain

dfGW

dt
=
96

5
π8/3η (
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c3
)

5/3
f
11/3
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≡
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5
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GMc

c3
)

5/3
f
11/3
GW . (7)

This is the expression for the Newtonian chirp. Here it is customary to define yet another
mass combination, the chirp mass, Mc ≡ η3/5M , which is the unique mass combination that
characterizes the inspiral of the system. Written out in terms of the component masses,Mc ≡

(m1m2)
3/5(m1+m2)

−1/5. With a starting gravitational-wave frequency fGW = f0, show that the
system collapses in a time

tc =
5

256

GMc

c3
(
πGMc f0

c3
)

−8/3
. (8)

Note: In order to obtain this last expression, it is okay to assume an upper frequency fGW →∞

at coalescence, rather than a cutoff merger frequency.
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Problem 3. GW waveform templates. In this problem we will code up a symmetric leading-
order “Newtonian chirp” waveform for use in simple data analysis. Units: All expressions in
this problem are written in geometrized units, in which G = c = 1. Mass and distance have units
of seconds. Physical units can be obtained by replacing a massMc by GMc/c3, and a distance
dL by c dL. In geometrized units, 1M⊙ = 4.92549095 × 10−6 s and 1pc = 1.0292712503 × 108 s.

In the leading order post-Newtonian approximation, the observed GW signal, which is a linear
combination of the two polarizations h+(t) and h×(t), can be written out as:

h(t) = A(t) cosφ(t). (9)

The amplitude A(t) depends on a particular combination of the masses, called the chirp mass
Mc, the instantaneous frequency F (t) of GWs, the luminosity distance dL to the source, and
a geometric factor C that depends on the location of the source in the sky and its orientation
with respect to the detector.

A(t) = C
4M

5/3
c π2/3F (t)2/3

dL
. (10)

For simplicity, we shall assume C = 1 which implies that the binary is conveniently oriented
giving circular polarization and the source is located along the direction where the detector
shows maximum directional sensitivity. The chirp mass can be expressed in terms of the total
mass M ≡m1 +m2 and reduced mass µ ≡m1m2/M asMc = µ3/5M2/5. The frequency evolution
F (t) is given by

F (t) =
(McF 9

0 )
1/8

[(McF0)
1/3 − 256F 3

0M
2
cπ

8/3 t/5]3/8
(11)

where F0 is the starting frequency of the signal: F0 ≡ F (t = 0). It can be seen that the frequency
sweeps from lower to higher frequencies, until the approximation breaks down at t = tc. The
coalescence time tc can be computed as

tc =
5

256 (πF0)
8/3M5/3

c

. (12)

Finally, the phase φ(t) of the GW signal can be expressed as

φ(t) = φ0 − 2(
1

256 (πMcF0)
8/3 −

t

5Mc

)

5/8
, (13)

where φ0 is the phase at t = 0. A Newtonian chirp waveform for chirp mass Mc = 10M⊙,
distance dL = 100 Mpc, initial phase φ0 = 0 and start frequency F0 = 40 Hz. is shown below.
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Problem 4. Matched filtering. In the case a known signal h(t) buried in stationary Gaussian,
white noise, the optimal technique for signal extraction is the matched filtering, which involves
cross-correlating the data with a template of the signal. The correlation function between two
time series x(t) and ĥ(t) for a time shift τ is defined as:

R(τ) = ∫
∞

−∞
x(t + τ) ĥ⋆(t)dt. (14)

Above, ⋆ denotes complex conjugation, and ˆh(t) ≡ h(t)/∣∣h∣∣, where the norm ∣∣h∣∣ of the template
is defined by

∣∣h∣∣2 = ∫
tc

0
∣h(t)∣2/σ2 dt,

where σ2 is the variance of the noise. The optimal signal-to-noise ratio (SNR) is obtained when
the template exactly matches with the signal.

SNR = ∣∣h∣∣ (15)

If the SNR is greater than a predetermined threshold (which corresponds to an acceptably
small false alarm probability), a detection can be claimed. Note that the actual detector data
is neither white and is only approximately Gaussian, which makes actual GW detection a
siginificantly more complex exercise than mentioned above!

A data set containing a Newtonian GW signal with dL = 100 Mpc, φ0 = 0, F0 = 40Hz, but un-
known Mc can be downloaded from https://www.dropbox.com/s/cjs6oh3cx8f6m4p/gw data.
dat.gz. The data d(t) is comprised of the signal h(t) and Gaussian white noise n(t) of standard
deviation σ = 10−21. That is, d(t) = h(t) + n(t). Write a code to detect the signal using the
simple matched filtering method mentioned in the previous section. Since you don’t know the
chirp mass of the signal, choose a grid of chirp masses in the intervalMc ∈ (8,12)M⊙ with some
appropriate grid spacing. This is your “template bank”!

Problem 5. Simple exercises with real data!

Download the data for the first GW detection GW150914 from the website of the Gravitational
Wave Open Science Center (GWOSC): https://www.gw-openscience.org/

Plot the spectrogram (time-frequency map) of the event, confirming that it has the character-
istics we would expect, i.e. an increasing frequency and amplitude. From the frequency give
a back-of-the-envelope estimate on the maximal possible characteristic size and mass of the
GW source, and check whether it is consistent with the values reported by the LIGO-Virgo
Collaboration.

GWOSC has an excellent tutorial page which can help in how to read and interpret GW data.
You can find the tutorials at: https://www.gw-openscience.org/tutorials/
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