Gravitational Wave Observations

Archisman Ghosh
archisman.ghosh@ugent.be

"Quantum Fluids in the Universe"

Lecture 1: 2023 Jun 06
Discovery and Detectors

Gravitational wave observations: course plan

Lecture 1: Discovery and the detectors that made it possible

Lecture 2: Modelling and data analysis

Lecture 3: Observational science and future prospects

GW150914: BBH

What are gravitational waves?

Ripples in the curvature of spacetime!

General relativity

Einstein equations:

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

metric $g_{\mu \nu}$
curvature $R_{\mu \nu \lambda \sigma}$ "Riemann tensor"

$$
\begin{gathered}
\eta_{\mu \nu}=\left(\begin{array}{cccc}
-1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right) \quad T_{\nu}^{\mu}=\left(\begin{array}{cccc}
-\rho & & \\
& \mathcal{P} & & \\
& & \mathcal{P} & \\
& & & \mathcal{P}
\end{array}\right) \\
\text { non-linear }
\end{gathered}
$$

Linearized GR

Small perturbations h about a flat background:

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}
$$

In Lorenz gauge, where $\partial_{\mu} \bar{h}^{\mu \alpha}=0$,
$\square \bar{h}_{\mu \nu}=0 \quad$ wave equation! for relative deformation or strain $h \equiv \frac{\delta l}{l}$

GW polarizations

Two physical degrees of freedom
Gauge transformation possible to TT gauge
where d.o.f are transverse and traceless

Two polarizations: + and \times ("plus" and "cross")
transverse, traceless in TT gauge

+ polarization
\times polarization

Are gravitational waves physical?

1916-1918: Einstein's calculations (incl. flux, quadrupole formula, ...)
1922: Eddington brought up the importance of gauge artefacts
1936: Einstein and Rosen claimed that GWs could not exist!
Robertson (reviewer) was convinced otherwise \rightarrow Infeld \rightarrow Einstein
1956: Pirani rephrased in terms of co-ordinate independent observables
1957: Feynman demonstrated GWs could transmit energy (Chapel Hill)
Bondi | Weber (resonant bar detectors)
1975: Hulse-Taylor binary pulsar \Rightarrow GWs exist!
(Nobel Prize 1993)
2015: Direct detection by LIGO-Virgo
(Nobel Prize 2017)

Pulsars

Spinning neutron stars strong magnetic fields $\mathcal{O}\left(10^{8}-10^{15}\right) \mathrm{G}$ radio emission along magnetic axis not aligned with spin axis \Rightarrow pulses of radio emission
most precise clocks!

How can we detect GWs?

rigid rulers
not practicable
resonant mass
bar detectors | lunar GW antenna!
proper length between "freely falling" masses LIGO | ET | LISA
modulation of time dilation

CMB polarization
pulsar timing array

Planck \| BICEP

GW strain

Radiation zone:

$$
R \ll \lambda \ll d_{L}
$$

$$
\begin{aligned}
& h_{i j}^{\mathrm{TT}} \simeq \frac{2 G}{c^{4} d_{L}} \ddot{\bar{l}}_{i j}\left(t-\frac{r}{c}\right) \\
& \text { changing quadrupole moment }
\end{aligned}
$$

Order of magnitude estimates -

$$
h \sim \frac{G}{c^{4}} \frac{\ddot{i}}{d_{L}} \quad I \sim M R^{2} \quad \ddot{i} \sim \omega^{2} I
$$

$M \sim 1 \mathrm{~kg}, \quad R \sim 1 \mathrm{~m}, \quad \omega \sim 1 s^{-1} \quad d_{L} \gg c / \omega \quad \Rightarrow \quad h \ll \frac{G}{c^{5}} M R^{2} \omega^{3}$
$G=6.64 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
$c=3 \times 10^{8} \mathrm{~ms}^{-1}$

$$
h \sim \frac{G}{c^{4}} \frac{M R^{2} \omega^{2}}{d_{L}}=\frac{10^{-44}}{d_{L} / m} \quad \text { or } \quad h \ll 10^{-53}
$$

spacetime is stiff

GW energy

$$
L_{\mathrm{GW}}=-\frac{d E}{d t}=\frac{1}{5} \frac{G}{c^{5}}\left\langle\dddot{I}_{i j} \dddot{\bar{I}}_{\bar{i}}\right\rangle
$$

gravitational Larmor formula

Order of magnitude estimates -

$$
L_{\mathrm{GW}} \sim \frac{G}{c^{5}} \ddot{I}^{2} \quad I \sim M R^{2} \quad \dddot{l} \sim \omega^{3} I
$$

$M \sim 1 \mathrm{~kg}, \quad R \sim 1 \mathrm{~m}, \quad \omega \sim 1 \mathrm{~s}^{-1}$
$d_{L} \gg c / \omega$
$G=6.64 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
$c=3 \times 10^{8} \mathrm{~ms}^{-1}$

$$
L_{G W} \sim \frac{(1 W)^{2}}{c^{5} / G} \sim 10^{-53} W
$$

GW energy

$$
L_{\mathrm{GW}}=-\frac{d E}{d t}=\frac{1}{5} \frac{G}{c^{5}}\left\langle\dddot{\bar{I}}_{i j} \bar{i}^{i j}\right\rangle
$$

gravitational Larmor formula

Order of magnitude estimates -

$$
\begin{aligned}
& L_{\mathrm{GW}} \sim \frac{G}{c^{5}} \dddot{l}^{2} \quad I \sim M R^{2} \quad \dddot{l} \sim \omega^{3} I \sim I \frac{v^{3}}{R^{3}} \\
& L_{\mathrm{GW}} \sim \frac{G}{c^{5}}\left(\frac{M v^{3}}{R}\right)^{2}= \frac{c^{5}}{G}\left(\frac{G M}{R c^{2}}\right)^{2}\left(\frac{v}{c}\right)^{6} \approx \frac{c^{5}}{G}\left(\frac{v}{c}\right)^{10} \\
& \text { vPlanck luminosity" } \frac{c^{5}}{G}=3.63 \times 10^{52} \mathrm{~W}
\end{aligned}
$$

Interferometric GW detectors

Can we measure a strain of 10^{-21} ?

Over 4 km detectors: distances of $10^{-18} \mathrm{~m}$!

nucleus of an atom: $10^{-15} \mathrm{~m}$ molecules (mirror surface): $10^{-10} \mathrm{~m}$

Can we measure a strain of 10^{-21} ?

Michelson interforemoter:

$$
h=\frac{\Delta I}{I} \approx \frac{\lambda_{\text {laser }}}{L_{\text {ifo }}} \approx \frac{10^{-6} \mathrm{~m}}{10^{3} \mathrm{~m}} \approx 10^{-9}
$$

Fabry-Pérot cavity (wave-optics): light bounces back and forth $L \rightarrow L_{\text {eff }}=\sim 140 \times 4 \mathrm{~km} \approx 600 \mathrm{~km}$ Note: $\lambda_{\mathrm{GW}}=\frac{c}{f_{\mathrm{GW}}} \approx \frac{3 \times 10^{8} \mathrm{~ms}^{-1}}{300 \mathrm{~s}^{-1}} \approx 1000 \mathrm{~km}$

$$
h=\frac{\Delta I}{l} \approx \frac{\lambda_{\text {laser }}}{L_{\text {eff }}} \approx \frac{10^{-6} \mathrm{~m}}{10^{6} \mathrm{~m}} \approx 10^{-12}
$$

Can we measure a strain of 10^{-21} ?

We can measure a fraction of a wavelength not just dark and bright spots

Photodetector (counts photons): shot noise \Leftrightarrow Poisson statistics

$$
\begin{gathered}
\frac{\delta l}{\lambda_{\text {laser }}} \approx \frac{\Delta N_{\text {photon }}}{N_{\text {photon }}} \approx \frac{N_{\text {photon }}^{1 / 2}}{N_{\text {photon }}} \approx N_{\text {photon }}^{-1 / 2} \\
N_{\text {photon }}=\frac{P_{\text {laser }} \tau}{h c / \lambda_{\text {laser }}} \quad \tau \lesssim \frac{1}{f_{\mathrm{GW}}}, \quad 1 \mathrm{~W} \text { laser } \\
\lesssim \frac{P_{\text {laser }} \lambda_{\text {laser }}}{h c f_{\mathrm{GW}}}=\frac{10^{-6}}{6 \times 10^{-34} \times 3 \times 10^{8} \times 300} \approx 10^{16} \text { photons } \\
h=\frac{\Delta l}{l} \approx \frac{\lambda_{\text {laser }}}{L_{\text {eff }}} \times N_{\text {photon }}^{-1 / 2} \approx \frac{10^{-6} \mathrm{~m}}{10^{6} \mathrm{~m}} \times 10^{-8} \approx 10^{-20}
\end{gathered}
$$

Detector noise

next week

Terrestrial noise: vibration isolation

Seismic noise | anthropogenic noise

$$
\begin{aligned}
& \ddot{x}+\gamma \dot{x}+\omega_{0}^{2} x=f \\
& x=\frac{f}{\omega_{0}^{2}-\omega^{2}+i \gamma \omega} \\
& x \propto \omega^{-2} \quad\left(\omega \gg \omega_{0}\right)
\end{aligned}
$$

multi-stage pendulum | inverted pendulum

low natural frequency

Multi-stage suspension system

Virgo super-attenuator

Thermal noise

Mirror and its coating get heated up $\quad \Rightarrow \quad$ Brownian motion!

$$
\begin{aligned}
S_{n}(\omega) & \approx \frac{4 k_{B} T}{M \omega^{2}} \operatorname{Re}\left[\frac{i \omega}{\omega_{0}^{2}-\omega^{2}+i \omega_{0}^{2} \phi(\omega)}\right] \\
\Rightarrow \quad \sqrt{S_{n}(f)} & \sim f^{-5 / 2}
\end{aligned}
$$

Thermal motion of atoms is the limiting factor!

Quantum noise

Photon shot noise | radiation pressure noise

$$
\Rightarrow \text { standard quantum limit }
$$

Quantum squeezing to surpass quantum limit?

Frequency-dependent squeezing!

Gravity gradient noise / Newtonian noise

Newtonian gravity fluctuates, e.g. due to surface waves!
important for future detectors

Cannot be filtered active subtraction?

Death of main sequence stars

(gravito-thermal instability) negative specific heat \Rightarrow
 red giant 'core-halo' structure (hot core, cool outer layers)
progenitor up to $8 M_{\odot}$: planetary nebula + white dwarf (e^{-}degeneracy)
maximum mass of white dwarf $\approx 1.3 M_{\odot}$ (Chandrashekhar limit) above that \Rightarrow neutron star (n degeneracy)
progenitor 8-25 M_{\odot} : core collapse supernova (SNe Ib, Ic, II) most of heavier elements up to ${ }^{56} \mathrm{Fe}$ produced in SNe explosions first stars: very low metallicity

Neutron stars

$M_{\mathrm{NS}} \gtrsim 1.3 M_{\odot} \quad R_{\mathrm{NS}} \lesssim 12 \mathrm{~km} \quad \omega \gtrsim \mathrm{kHz} \quad$ solar mass in a city! giant nucleus; cold ball of strong interactions
equation-of-state $\quad \rho=\mathcal{P}(\rho) \quad \Leftrightarrow \quad M(R)$ maximum mass?

Pulsars

Spinning neutron stars strong magnetic fields $\mathcal{O}\left(10^{8}-10^{15}\right) \mathrm{G}$ radio emission along magnetic axis not aligned with spin axis \Rightarrow pulses of radio emission
most precise clocks!

Black holes

Schwarzschild solution (2016) Schwarzschild radius $=\frac{2 G M}{c^{2}}$

$$
d s^{2}=-\left(1-\frac{2 G M}{r c^{2}}\right) d t^{2}+\frac{d r^{2}}{\left(1-\frac{2 G M}{r c^{2}}\right)}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Astrophysical BH rotating $\quad \Rightarrow \quad$ Kerr solution: mass m; "spin" \vec{a}

No restriction on mass | astrophysically expect few $M_{\odot}-60 M_{\odot}$
lower mass gap, PISN mass gap | primordial BHs?
fixed shape (in a given field): no horizon deformability no-hair theorem \Rightarrow quasinormal mode $\omega, \tau=$ function (m, a)
area theorem Hawking temperature $T_{H} \sim \frac{1}{M}$
cosmic censorship \Rightarrow maximum a given m

Gravitational-wave sources

| | Modelled | Unmodelled |
| :---: | :---: | :---: | :---: |
| | | |
| Bursts | | |

Other gravitational-wave detectors

Moore, Cole, \& Berry, http://rhcole.com/apps/GWplotter/

A new window to the observable universe!
electromagnetic waves
detect intensity

$$
N_{\text {obs }} \sim \text { sensitivity }^{3 / 2}
$$

incoherent superposition
strongly interacting affected by gas and dust
deep imaging on small area
high angular resolution
wavelength $\ll /<$ size of source
\Rightarrow image

gravitational waves

detect amplitude

$$
N_{\text {obs }} \sim \text { sensitivity }^{3}
$$

coherent \Rightarrow sensitivity to phase
weakly interacting
affected minimally by medium
all sky sensitivity
poor angular resolution
wavelength $\sim />$ size of source
analogous to sound

Geometrized units

$c=1, G=1$

$$
[M]=[L]=[t]
$$

Measure in seconds!
distances in seconds masses in seconds?

Schwarzschild radius of the Sun $=3 \mathrm{~km}$

$$
\begin{aligned}
& \Rightarrow \quad 2 M_{\odot} \approx 10^{-5} \mathrm{~s}=0.01 \mathrm{~ms} \\
& \Rightarrow \quad 60 M_{\odot} \approx 0.3 \mathrm{~ms}
\end{aligned}
$$

