

Search for missing materials in the LHCb simulation

Summer Student: Mengzhen Wang Supervisor: Jibo He

Outline

- Introduction
- Data set and selection
 - $-J/\psi$ selection
 - Reweight of Velo cluster
- Hit map MC/data comparison
- Tomography with downstream tracks
 - Hadronic interaction
 - Gamma conversion
- Tomography with T-tracks
- Summary

Introduction

- We need well-tuned MC for
 - Online/Offline selection optimization
 - Efficiency estimate
 - Design of new detectors
- Before having well-tuned MC

Introduction

- Downstream region, e.g., SPD
 - Difficulties
 - Limited tracking
 - Weak magnetic field
 - Still an open question

Simplified data analysis

Dataset for analysis

Selection

Reweight

Data/MC comparison before reweighting

• From upstream to downstream detectors:

Data/MC comparison after reweighting

• From upstream to downstream detectors:

Data/MC hit map ratio for RICH1 & TT

Data/MC hit map ratio for T-stations

• IT: More hits in data for downstream

Data/MC hit map ratio for RICH2

• More hits in data for large Y

¹²

Data/MC hit map ratio for Calorimeters

• More hits in data for large Y

Data/MC hit map ratio for Muon-Stations

M3

Tomography

- With downstream tracks
 - To compare with previous studies
 - Hadronic interaction & gamma conversion
- With T-tracks
 - To study material budget in downstream areas in detail
 - Hadronic interaction

Tomography with downstream tracks

- Hadronic interaction: 2 tracks combination
- Selection criteria
 - Require not from PV; Ks, Λ vetoed.
 - Signal purity (MC): 10%
- Selected vertices:
 - MC: 1.6×10⁵ Data: 2×10⁶

 $-\sigma_x/\sigma_y$ ~2mm σ_z ~25mm

Hadronic interaction vertices distribution

• TT clearly seen, but details in VELO and RICH1 is unclear

Comparison to previous studies

• My work (2 tracks combination)

Victor Coco's talk_[2012.10] (at least 4 tracks)

Tomography with downstream tracks

- Gamma conversion: electron-positron combination
- Selection criteria
 - Mass cut (<30MeV)
 - Signal purity (MC): 37%
- Selected vertices:
 - MC: 2.8×10³ Data: 7×10⁶
- Spatial resolutions from MC

0

-100

-200

200

 $\delta Y[mm]$

100

Gamma conversion vertices distribution

Tomography with T-tracks

- Hadronic interaction: 2 tracks combination
- Selection criteria
 - Require not from PV
 - Signal purity (MC): 14%
- Selected vertices:
 - MC: 6.3×10⁵ Data: 9.5×10⁷
- Spatial resolution from MC

δZ

Entries 220609

-67.6

1000 21 2000

δZ[mm]

520

Mean

RMS

Hadronic interaction vertices distribution

Hadronic interaction vertices z-distribution

Zoom in for Z axis: 4500mm~6000mm

(normalized)data/MC ratio distribution

Zoom in for Z axis: S3F of beam pipe

Z: 7100mm~7200mm

- Dataset selection & reweight
- Hit map comparison
 - More hits in data for large Y
- Tomography with downstream tracks
 - Hadronic interaction
 - Gamma conversion
- Tomography with T-tracks, hadronic interaction
 - Vertices z-distribution difference of data/MC
 - Some details visible, feasibility proved
- Outlook
 - Larger dataset, more optimized selection, numerical analysis

Acknowledgement

- Many thanks to everyone who helped on this project, especially
 - Carmelo D'Ambrosio, Andreas Schopper
 - Simulation: Gloria Corti, Sajan Easo, Riccardo Cenci
 - Reconstruction: Wouter Hulsbergen, Paul Seyfert, Victor Coco
 - Velo: Michael Alexander
 - TT, IT: Matthew Needham, Mark Tobin
 - OT: Niels Tuning, Francesco Dettori
 - RICH: Chris Jones, Christoph Frei
 - Calo: Stephane Monteil, Olivier Deschamps
 - Muon: Giacomo Graziani