

Istituto Nazionale di Fisica Nucleare

Evidence of a new pentaquark candidate in $\Xi_b^- \to J/\psi \Lambda K^-$ decay

28/06/2022 Mengzhen Wang

Outline

PLB 772 (2017) 265-273

Run1: Observation of $\Xi_b^- \to J/\psi \Lambda K^-$

Science Bulletin 66 (2021) 1278 Run1+2: Am. An. & evidence of a $J/\psi\Lambda$ structure

PLB 772 (2017) 265-273

First observation of the decay $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ (LHCb Run1)

Motivation

- Pentaquark-like states observed in $\Lambda_b^0 \rightarrow J/\psi p K^-$ in 2015
- Search for the SU(3) partners

- First target:
 - Search for $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ using LHCb Run1 data
 - Evaluate the available signal yield for further amplitude analysis

PRL 115(2015)072001

Analysis strategy

- LHCb Run1 pp data, $L \sim 3 \text{ fb}^{-1}$
- $\Lambda \rightarrow p\pi$ (Long+Long OR Down+Down); $J/\psi \rightarrow \mu^+\mu^-$
- Online selection:
 - \bullet Two high- p_T muons, vertexing far away from the PV
- Offline selection:
 - Use the fully reconstructed topology, kinematic & PID
 - Loose preselection + tighter MVA-based selection
 - Optimized separately for LL & DD samples
- $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ signals act as peak in $m(J/\psi \Lambda K^-)$ spectrum
 - 1D mass fit for signal yield extraction
- If observed, measure the branching fraction

Measure the production ratio:
$$R_{\Xi_b^-/\Lambda_b^0} \equiv \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi \Lambda K^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \Lambda)} = \frac{N(\Xi_b^- \to J/\psi \Lambda K^-)}{N(\Lambda_b^0 \to J/\psi \Lambda)} \epsilon_{\rm rel},$$

Results

- Significant Ξ_b^- peak in $m(J/\psi\Lambda K^-)$ spectrum. Indicate 1st observation
- ~300 signals collected. Not enough for a amplitude analysis. Stay tuned with Run2 data.

Result of production ratio: $R_{\Xi_{b}^{-}/A_{b}^{0}} = (4.19 \pm 0.29 \,(\text{stat}) \pm 0.15 \,(\text{syst})) \times 10^{-2}$

Also a mass measurement: $M(\Xi_b^-) - M(\Lambda_b^0) = 177.08 \pm 0.47 \,(\text{stat}) \pm 0.16 \,(\text{syst}) \,\text{MeV}/c^2$.

Science Bulletin 66 (2021) 1278

Amplitude analysis of $\Xi_b^- \rightarrow J/\psi \Lambda K^$ decay (LHCb Run1+2)

Data sample

• Run 1+2 data: ~1750 signals, purity ~80%

Selection optimization: Loosen $p_{\rm T}$ cuts for Λ^* decaying products Loosen $\chi^2_{\rm IP}$ cuts for kaons

Potential *P*_{cs} contribution? Amplitude analysis required. (next slide)

Amplitude analysis

• Consider Λ as the final-state particle. The formalism for $\Lambda_b^0 \rightarrow J/\psi p K^-$ analysis can be directly used

- Alignment issue fixed Chinese Phys. C 45 (2021) 063103
- Conventional ΛK^- structures

RBW	line	shape
-----	------	-------

State	$M_0 \; ({\rm MeV})$	$\Gamma_0 \ ({\rm MeV})$	LS couplings	J^P examined
$\Xi(1690)^{-}$	1690 ± 10	< 30	4(6)	$(1/2, 3/2)^{\pm}$
$\Xi(1820)^{-}$	1823 ± 5	24^{+15}_{-10}	3~(6)	$3/2^{-}$
$\Xi(1950)^{-}$	1950 ± 15	60 ± 20	3(6)	$(1/2, 3/2, 5/2)^{\pm}$
$\Xi(2030)^{-}$	2025 ± 5	20^{+15}_{-5}	3(6)	$5/2^{\pm}$.
NR ΛK^-	-	-	4(4)	$1/2^{-}$

Significant peaks in $J/\psi\Lambda$ spectrum. Mass & width float

Mass & width constrained using measured values & uncertainties

• The potential $J/\psi\Lambda$ state

- RBW with float mass & width
- J^P unknown. Tested several hypotheses, use the best one (largest LL) as default setting

Result of amplitude analysis

Two Ξ^{*-} states

- Adding a P_{cs} improves $-2\ln L$ by 43 units, $\sim 4.3\sigma$ significance
 - 3. 1σ significance when syst. uncertainty considered

 P_{cs} mass 19MeV below the $\Xi_c^0 \overline{D}^{*0}$ threshold. Statistic not enough for J^P determination.

State	$M_0 \; [\mathrm{MeV}\;]$	$\Gamma[MeV]$
$P_{cs}(4459)^0$	$4458.8 \pm 2.9 {}^{+4.7}_{-1.1}$	$17.3 \pm 6.5 {}^{+8.0}_{-5.7}$
$\Xi(1690)^{-}$	$1692.0 \pm 1.3 {}^{+1.2}_{-0.4}$	$25.9 \pm 9.5 {}^{+14.0}_{-13.5}$
$\Xi(1820)^{-}$	$1822.7 \pm 1.5 {}^{+1.0}_{-0.6}$	$36.0 \pm 4.4 {}^{+7.8}_{-8.2}$

Consistent with PDG, with improved precision

Conclusion

- Pentaquark-like states in $\Lambda_b^0 \rightarrow J/\psi p K^-$ indicates the existence of a new family of exotic structures
- $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ decay observed & studied by LHCb. Evidence of a $J/\psi \Lambda$ structure found in amplitude analysis, which is a candidate of $P_{cs}(udsc\bar{c})$ pentaquark-like state
- Stay tuned with upcoming Run3 data for open questions
 - Further confirm the existence
 - J^P measurement
 - Potential two-peak structure
 - • • •

 $\Sigma_c \overline{D}^*$ threshold P_c(4450)⁺: P_c(4440)⁺, P_c(4457)⁺

> $\Xi_c \overline{D}^*$ threshold $P_{cs}(4459)^+$:??

Pentaquark in B meson decays

- A similar story: $B_s^0 \rightarrow J/\psi p\bar{p}$
 - Observation of the B decay using part of LHCb pp collision data
 - Non-trivial pentaquark-like structure seen in follow-up Run1+2 study

• Now limited by stat. fluctuation. But the relatively larger P_c fit fraction make it a promising channel for precise measurement of J^P , pole position properties

Pentaquark in $\eta_c p$ system

• ~170 $\Lambda_b^0 \rightarrow \eta_c p K^-$ signals in LHCb Run2 data (5.5 fb⁻¹)

- Search for $P_c(4312)^+ \rightarrow \eta_c p$ but no significant hint
- If $P_c(4312)^+$ is a S-wave $\Sigma_c \overline{D}$ molecular, its fraction in $\Lambda_b^0 \rightarrow \eta_c p K^-$ is roughly 3%
- Yield in Run1~3
 - Run3: 14 fb⁻¹, $\epsilon \times 2$ (fully hadronic) \rightarrow yield \times 5 than Run2
 - A bit more than $1000 \Lambda_b^0 \rightarrow \eta_c p K^-$ signals expected

PRD 102 (2020) 112012

Pentaquark in $\eta_c p$ system (prospect)

	${\cal Z}_b^- o J/\psi \Lambda K^-$ am. an. (Run1+2, published)	$\Lambda_b^0 \rightarrow \eta_c p K^-$ am. an. (Run1~3, proposed)
Yield of <i>b</i> -hadron decays	~1750	~1000
Relative contribution from pentaquark states	~2.7% (measured)	~3% (predicted)
(Expected) achievements	$P_{cs}(4459)^0$ with 3σ , fit fraction reported	Measurement of $P_c(4312)^+$ fit fraction
For J ^P determination	not determined. Need Run3 data	not expected. Run4 data would be required.

	Р	$P_c J^P = \frac{1}{2}^-$		$\boldsymbol{P}_c \ \boldsymbol{J}^{\boldsymbol{P}} = \frac{3}{2}^{-1}$	
L of $\eta_c p$ system		0		2	$f(\cos\theta_{P_c}) \sim 1 + 3\cos^2\theta_{P_c}$
<i>L</i> of $J/\psi p$ system		0		0, 2	
	$f(\cos\theta_{P_c}) \sim 1$		f(co	$(s\theta_{P_c})$ unknown	

Thank you for your attention !

Any questions or comments ?