Final-state alignment issue in the helicity formalism

Mengzhen Wang
2022/06/24

Outline

- The final-state alignment in helicity formalism
- Introduction
- Traditional approach
- Potential weak points \& proposal of new techniques
- Adv.High Energy Phys. 2020 (2020) 6674595
- Chinese Phys. C 45 (2021) 063103 (today's menu)

Reminder

- A series analyses @ LHCb indicate the existence of pentaquark-like structures in $J / \psi p$ system
- Two amplitude analysis included

- Helicity-based decay amplitude

$$
\lambda=\vec{s} \cdot \vec{p}
$$

Helicity formalism: two-body decay

- Widely used for constructing angular sector of decay amplitudes

Two-body decay: $A \rightarrow B C$

Rest frame of A

Initial state: $\mid \lambda_{A}>\quad\left(\mathrm{x}_{0}^{\{A\}}, \mathrm{y}_{0}^{\{A\}}, \mathrm{z}_{0}^{\{A\}}\right)$

$$
R\left(\phi_{B}^{\{A\}}, \theta_{B}^{\{A\}}, 0\right)
$$

Final state: $\mid \lambda_{B},-\lambda_{c}>\left(\mathrm{x}_{0}^{\{B\}}, \mathrm{y}_{0}^{\{B\}}, \mathrm{z}_{0}^{\{B\}}\right)$

$$
\left|\lambda_{A}>=\sum_{\lambda_{A^{\prime}}} D_{\lambda_{A}, \lambda_{A^{\prime}}}^{J_{A}}\left(\phi_{B}^{\{A\}}, \theta_{B}^{\{A\}}, 0\right)\right| \lambda_{A}^{\prime}>
$$

Angular momentum conservation: Non-zero amplitude when $\lambda_{B}-\lambda_{c}=\lambda_{A}{ }^{\prime}$

So amplitude proportional to:

$$
D_{\lambda_{A}, \lambda_{B-\lambda_{C}}}^{J_{A}}\left(\phi_{B}^{\{A\}}, \theta_{B}^{\{A\}}, 0\right)
$$

Multi-body decays

- Considered as a "chain" of multiple two-body decays
- Example: $\Lambda_{b}^{0} \rightarrow J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right) \Lambda^{*}(\rightarrow p K)$

Multiple decay chains

- Still use the pentaquark analysis as example
- Λ^{*} decay chain (reference chain):
- $\Lambda_{b}^{0} \rightarrow J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right) \Lambda^{*}(\rightarrow p K)$

lab frame
- P_{c}^{+}decay chain:
- $\Lambda_{b}^{0} \rightarrow P_{c}^{+}\left(\rightarrow J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right) p\right) K$

- Start from the same initial state (by-definition)
- Final states should also be defined in the same frame
- Does not happen automatically
- Need a final-state alignment

The alignment angle

- Traditional approach for final-state alignment
- Express final (x, y, z) axis using particle momentum
- Find out the relation between different chains

$$
\Lambda_{b}^{0} \rightarrow P_{c}^{+}\left(\rightarrow J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right) p\right) K^{-} \quad \Lambda_{b}^{0} \rightarrow J / \psi\left(\rightarrow \mu^{+} \mu^{-}\right) \Lambda^{*}(\rightarrow p K)
$$

The DPD formula

- Similar as traditional helicity formalism, but do the rotations in an alternative way

aligned CM

$\left(M_{\lambda, \xi}^{\Lambda} \xi_{\mathrm{LHCb}}=\sum_{\nu, \mu} D_{\Lambda, \nu}^{J J_{\nu}\left(\phi_{1}, \theta_{1}, \phi_{23}\right)}\right.$
$\times\left(\sum_{s}^{\Lambda^{*} \rightarrow p K} \sum_{\tau} \sqrt{2} n_{s}{ }_{\nu, \tau-\mu}^{1 / 2}(0) H_{\tau, \mu}^{0 \rightarrow(23), 1} X_{s}\left(\sigma_{1}\right) d_{\tau, \lambda}^{s}\left(\theta_{23}\right) H_{\lambda, 0}^{(23) \rightarrow 2,3}\right.$
$\left.+\sum_{s}^{P_{c} \rightarrow J / \psi_{p}} \sum_{\tau, \mu^{\prime}, \lambda} \sqrt{2} n_{s} d_{\nu_{,}, \tau}^{1 / 2}\left(\hat{\theta}_{(1)}\right) H_{\tau, 0}^{0 \rightarrow(12), 3} X_{s}\left(\sigma_{3}\right) d_{\tau, \mu^{\prime}-\lambda^{\prime}}^{s}\left(\theta_{12}\right) H_{\mu^{\prime}, \lambda^{\prime}}^{(12) \rightarrow 1,2} d_{\lambda^{\prime} \lambda}^{1 / 2}\left(\zeta_{3(1)}^{2}\right) d_{\mu^{\prime} \mu}^{1}\left(\zeta_{3(1)}^{1}\right)\right)$
$\left.\times \sqrt{3} e^{i \mu\left(\phi_{23}+\phi_{+}^{\prime \prime}\right)} d_{\mu \xi}^{1} \xi_{+}^{1}\right) H_{\lambda_{+}, \lambda-}^{1+\mu^{+}, \mu^{-}}$,

The DPD formula

- Similar as traditional helicity formalism, but do the rotations in an alternative way
- In principle should lead to the same result as the traditional helicity formalism
- Numerical comparisons made between DPD and 2015 formalism for $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$amplitude analysis. Interesting behaviors observed.

The particle ordering issue

- Several changes have to be made for a consistent result of DPD \& traditional formalism
- Particle ordering issue:

$$
\begin{aligned}
& \mathcal{M}_{\lambda_{\Lambda_{b}}, \lambda_{p}, \Delta \lambda_{\mu}}^{\Lambda^{*}}=\sum_{n} R_{\Lambda_{n}^{*}}\left(m_{K p}\right) \mathcal{H}_{\lambda_{p}}^{\Lambda_{\lambda}^{*} \rightarrow K_{p}} \sum_{\lambda_{\psi}} e^{i \lambda_{\psi} \phi_{\mu}} d_{\lambda_{\psi}, \Delta \lambda_{\mu}}^{1}\left(\theta_{\psi}\right)
\end{aligned}
$$

lab frame
In the $\Lambda^{*} \rightarrow p K$ decay node, define the decay angles using the helicity angles of proton, rather than that of kaon (change the "particle ordering")

$$
\begin{gathered}
\phi_{p}=\phi_{K}+\pi\left(\text { if } \phi_{K}<0\right), \phi_{p}=\phi_{K}-\pi\left(\text { if } \phi_{K}>0\right) \\
\theta_{p}=\pi-\theta_{K}
\end{gathered}
$$

The particle ordering issue

- Effect of changing the ordering

$$
\phi_{p}=\phi_{K}+\pi\left(\text { if } \phi_{K}<0\right), \phi_{p}=\phi_{K}-\pi\left(\text { if } \phi_{K}>0\right)
$$

- A discontinuous change at $\phi_{K}=0$
- Additional 2π phase angle when $\phi_{K}<0$ w.r.t. $\phi_{K}>0$
- Namely $e^{i \lambda_{\Lambda^{*}} \times 2 \pi}=-1$ term in Λ^{*} chain amplitude
- Does not influence the P_{c} chain amplitude
- Leading to an opposite performance of interference term when $\phi_{K}<0$ w.r.t. $\phi_{K}>0$
- Get cancelled when combine $\phi_{K}<0$ and $\phi_{K}>0$ datasets
- The traditional approach is blind for the 2π factor

Interference of P_{c} and Λ^{*} chains

- Check the interference term in each ϕ_{K} regions using 2015 formula

Discontinuous at $\phi=0$

Interference get totally cancelled when combining samples with $\phi_{K}>$
0 and $\phi_{K}<0$

Proton spin axis alignment

- The initial spin axis is the same for P_{c} and Λ^{*} chain, and the final spin axis for proton should also be the same
- The overall rotations related to proton should be the same in the P_{c} and Λ^{*} chain

Basic idea for the check

- Check the rotations related to proton involved in the amplitude formalism, for both P_{c} and Λ^{*} chains
- Use the SU2 representation for rotation operators:
- To describe spin rotation of spin-half particle
- To make the 2π difference visible

Rotation along z-axis: $\quad R_{z}(\alpha)=\left(\begin{array}{cc}e^{-i \alpha / 2} & 0 \\ 0 & e^{i \alpha / 2}\end{array}\right)$,
Rotation along y-axis: $\quad R_{y}(\beta)=\left(\begin{array}{cc}\cos (\beta / 2) & -\sin (\beta / 2) \\ \sin (\beta / 2) & \cos (\beta / 2)\end{array}\right)$.

Rotation along any axis: $\quad R(\alpha, \vec{b})=R_{z}(\phi) R_{y}(\theta) R_{z}(\alpha) R_{y}(-\theta) R_{z}(-\phi)$

Rotations related to proton

- Based on 2015 paper's angle definitions:

$$
\begin{gathered}
R_{\Lambda^{*}}=\underline{R\left(\theta_{\Lambda^{*}}, \vec{p}_{p}^{A^{*}} \times \vec{p}_{K}^{A^{*}}\right) R\left(\phi_{K}, \vec{p}_{\Lambda^{*}}^{\Lambda_{b}^{0}}\right) R\left(\underline{\theta_{b}^{0}}, \vec{p}_{\Lambda^{*}}^{\Lambda_{b}^{0}} \times \bar{p}_{\Lambda_{b}^{0}}^{a b}\right),} \\
R_{P_{c}}^{ \pm}=R\left(\pm \pi, \vec{p}_{K}^{A^{*}}\right) R\left(\theta_{p}, \vec{p}_{p}^{P_{c}} \times \vec{p}_{\psi}^{P_{c}}\right) R\left(\theta_{P_{c}}, \vec{p}_{p}^{P_{c}} \times \vec{p}_{\psi}^{P_{c}}\right) R\left(\phi_{\psi}^{P_{c}}, \vec{p}_{P_{c}}^{\Lambda_{b}^{0}}\right) R\left(\theta_{\Lambda_{b}^{0}}^{P_{c}}, A_{P_{c}}^{A_{b}^{0}} \times \vec{p}_{\Lambda_{b}^{0}}^{a b}\right) R\left(\phi_{P_{c}}, \vec{p}_{\Lambda_{b}^{0}}^{a b}\right),
\end{gathered}
$$

Λ^{*} and P_{c} chain results in opposite y-axis in the proton rest
frame, rotate along z-axis by $\pm \pi$ to recover it.

- Use proton, instead of kaon to define Λ^{*} decay angle:

$$
R_{P_{c}}^{ \pm}=R\left(\pm \pi, \vec{p}_{p}^{P_{c}} \times \vec{p}_{\psi}^{P_{c}}\right) R\left(\theta_{p}, \vec{p}_{p}^{P_{c}} \times \vec{p}_{\psi}^{P_{c}}\right) R\left(\theta_{P_{c}}, \vec{p}_{p}^{P_{c}} \times \vec{p}_{\psi}^{P_{c}}\right) R\left(\phi_{\psi}^{P_{c}}, \vec{p}_{P_{c}}^{\Lambda_{b}^{0}}\right) R\left(\theta_{\Lambda_{b}^{0}}^{P_{c}}, \vec{p}_{P_{c}}^{\Lambda_{b}^{0}} \times \vec{p}_{\Lambda_{b}^{0}}^{-l a b}\right) R\left(\phi_{P_{c}}, \vec{p}_{\Lambda_{b}^{0}}^{-l a b}\right),
$$

$$
R_{\Lambda^{*}}=R\left(\theta_{\Lambda^{*}}, \vec{p}_{K}^{A^{*}} \times \vec{p}_{p}^{A^{*}}\right) R\left(\phi_{p}, \vec{p}_{\Lambda^{*}}^{\Lambda_{b}^{0}}\right) R\left(\theta_{\Lambda_{b}^{0}}, \vec{p}_{\Lambda^{*}}^{A_{b}^{0}} \times \vec{p}_{\Lambda_{b}^{0}}^{a a b}\right),
$$

Λ^{*} and P_{c} chain results in opposite z-axis in the proton rest frame, rotate along y-axis by $\pm \pi$ to recover it.

Boosts in different chains

- Λ^{*} and P_{c} chains boost from Λ_{b}^{0} rest frame to proton rest frame in different ways. The proton rest frame can be different in these two chains.
- For boost operators:

Boost along z-axis:

$$
B_{z}(\gamma)=\left(\begin{array}{cc}
e^{-\gamma / 2} & 0 \\
0 & e^{\gamma / 2}
\end{array}\right)
$$

Boost along any axis:

$$
B(\gamma, \vec{a})=R_{z}(\phi) R_{y}(\theta) B_{z}(\gamma) R_{y}(-\theta) R_{z}(-\phi)
$$

$$
\begin{array}{cc}
\text { Boosts of } \Lambda^{*} \text { chain } & \text { Boosts of } P_{c} \text { chain } \\
B_{\Lambda^{*}}=B\left(-y_{p}^{\Lambda^{*}}, \vec{p}_{p}^{A^{*}}\right) B\left(-y_{\Lambda^{*}}^{\Lambda_{b}^{0}}, \vec{p}_{A^{*}}^{\Lambda_{0}^{0}}\right), & B_{P_{c}}=B\left(-y_{p}^{P_{c}}, \vec{p}_{p}^{P_{c}}\right) B\left(-y_{P_{c},}^{\Lambda_{b}^{0}}, \vec{p}_{P_{c}}^{A_{c}^{0}}\right) .
\end{array}
$$

Not used for the boost operator in spin space, just to derive the rotation operator to associate the proton rest frames from different chains

Compare two chains

- For a proper alignment, we expect

A rotation to transfer between two different proton rest frames

$$
B_{\Lambda^{*}} B_{P_{c}}^{-1} R_{\Lambda^{*}}=R_{P_{c}}^{ \pm} .
$$

- Use a small sample of $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$data, calculate the exact form of the matrices in the left and right side of these equations, and check the distribution of

$$
D^{ \pm}=\sum_{i, j}\left|L_{i, j}-R_{i, j}^{ \pm}\right|^{2}, \quad \begin{array}{ll}
D^{ \pm}=0: \text { Left }=\text { Right } \\
& D^{ \pm}=8: \text { Left }=- \text { Right }
\end{array}
$$

Results

Conclusion: Half of the candidates have an additional "-1" sign compared to the rest.

- Based on old formula:
- No requirement on ϕ_{K}

Interference cancelled between them

Figure 2: Distribution of $D^{ \pm}$, based on SU2 representation, using 2015 paper's ordering.

Results

Conclusion: The "-1" sign is related to the sign of ϕ_{K}.

- Based on old formula:
- Require $\phi_{K}<0$

No more than a global phase shared by all candidates

Results

- Use proton, instead of kaon to define Λ^{*} decay angle:

No more than a global phase shared by all candidates

Figure 5: Distribution of $D^{ \pm}$, based on SU2 representation, using particle ordering in Ref. [1]..

Results

- Use proton, instead of kaon to define Λ^{*} decay angle:
- Discontinuous of the interference also disappear

Conclusion

- Final-state alignment is necessary for the construction of multi-body decay amplitudes with multiple decay chains
- For the validation of the alignment, one could directly write down rotation operators associated with each final-state particle, and check if the total effect is the same in all chains
- Important to select a good representative to visualize all quantum effects

Thank you for your attention! Questions or comments ?

Take the particle-2 convention

- For each $A \rightarrow B C$ decay node, add a $(-1)^{J C^{-} \lambda_{C}}$ term in the amplitude
- $\Lambda_{b}^{0} \rightarrow \Lambda^{*}(\rightarrow p K) J / \psi, \Lambda_{b}^{0} \rightarrow P_{c}(\rightarrow J / \psi p) K$
- Add (-1$)^{J} \psi^{-\lambda_{\psi}}$ for $\Lambda_{b}^{0} \rightarrow \Lambda^{*} J / \psi$ decay node
- Add $(-1)^{J_{p}-\lambda_{p}}$ for $P_{c} \rightarrow J / \psi p$ decay node
- Decay angle of $A \rightarrow B C$ is defined using B, and the corresponding rotation aligns C to the $-z$ direction
- Add a π rotation along y-axis, to align C to z-axis
- For writing the amplitude of following C decays in a consistent way; Or for doing the final-state alignment in a consistent way if C is a final-state particle
- $d_{-\lambda_{c}, \lambda_{c}}^{J c}(\pi)=(-1)^{J c-\lambda_{C}}$

Redefinition of ϕ_{μ}

- The J / ψ is the "particle- 2 " in $\Lambda_{b}^{0} \rightarrow \Lambda^{*} J / \psi$ node
- In 2015 paper, J / ψ was aligned to z-axis by a π rotation along x-axis
- Now we use particle-2 convention, corresponding to a π rotation along y-axis
- The resulting x, y axis after the π rotation is opposite. Need a redefinition of ϕ_{μ} to be consistent with particle-2 convention

