

Final-state alignment issue in the helicity formalism

Mengzhen Wang 2022/06/24

Outline

- The final-state alignment in helicity formalism
 - Introduction
 - Traditional approach

- Potential weak points & proposal of new techniques
 - Adv.High Energy Phys. 2020 (2020) 6674595
 - Chinese Phys. C 45 (2021) 063103 (today's menu)

Reminder

- A series analyses @ LHCb indicate the existence of pentaquark-like structures in $J/\psi p$ system
- Two amplitude analysis included

Helicity formalism: two-body decay

 Widely used for constructing angular sector of decay amplitudes

Initial state: $|\lambda_{A}\rangle = (x_{0}^{\{A\}}, y_{0}^{\{A\}}, z_{0}^{\{A\}})$ $R(\phi_{B}^{\{A\}}, \theta_{B}^{\{A\}}, 0)$ Final state: $|\lambda_{B}, -\lambda_{c}\rangle = (x_{0}^{\{B\}}, y_{0}^{\{B\}}, z_{0}^{\{B\}})$

$$\lambda_A > = \sum_{\lambda_{A'}} D^{J_A}_{\lambda_A,\lambda_{A'}}(\phi^{\{A\}}_B, \theta^{\{A\}}_B, 0) |\lambda'_A >$$

Angular momentum conservation: Non-zero amplitude when $\lambda_B - \lambda_c = \lambda_A'$

So amplitude proportional to: $D_{\lambda_A,\lambda_B-\lambda_C}^{J_A}(\phi_B^{\{A\}}, \theta_B^{\{A\}}, 0)$

Multi-body decays

- Considered as a "chain" of multiple two-body decays
 - Example: $\Lambda_b^0 \to J/\psi(\to \mu^+\mu^-)\Lambda^*(\to pK)$

Multiple decay chains

- Still use the pentaquark analysis as example
- Λ^{*} decay chain (reference chain):
 - $\Lambda_b^0 \to J/\psi(\to \mu^+\mu^-)\Lambda^*(\to pK)$

- P_c^+ decay chain:
 - $\Lambda_b^0 \to P_c^+ (\to J/\psi (\to \mu^+ \mu^-) p) K$

- Start from the same initial state (by-definition)
- Final states should also be defined in the same frame
 - Does not happen automatically
 - Need a final-state alignment

The alignment angle

- Traditional approach for final-state alignment
 - Express final (x, y, z) axis using particle momentum
 - Find out the relation between different chains

Dalitz-plot decomposition

The DPD formula

• Similar as traditional helicity formalism, but do the rotations in an alternative way

The DPD formula

- Similar as traditional helicity formalism, but do the rotations in an alternative way
- In principle should lead to the same result as the traditional helicity formalism
- Numerical comparisons made between DPD and 2015 formalism for $\Lambda_b^0 \rightarrow J/\psi p K^-$ amplitude analysis. Interesting behaviors observed.

The particle ordering issue

- Several changes have to be made for a consistent result of DPD & traditional formalism
 - Particle ordering issue:

In the $\Lambda^* \rightarrow pK$ decay node, define the decay angles using the helicity angles of proton, rather than that of kaon (change the "particle ordering")

$$\phi_p = \phi_K + \pi \ (if \ \phi_K < 0), \phi_p = \phi_K - \pi \ (if \ \phi_K > 0)$$
$$\theta_p = \pi - \theta_K$$

The particle ordering issue

• Effect of changing the ordering

 $\phi_p = \phi_K + \pi \ (if \ \phi_K < 0), \phi_p = \phi_K - \pi \ (if \ \phi_K > 0)$

- A discontinuous change at $\phi_K = 0$
- Additional 2π phase angle when $\phi_K < 0$ w.r.t. $\phi_K > 0$
- Namely $e^{i\lambda_{\Lambda^*} \times 2\pi} = -1$ term in Λ^* chain amplitude
 - Does not influence the P_c chain amplitude
- Leading to an **opposite** performance of **interference** term when $\phi_K < 0$ w.r.t. $\phi_K > 0$
- Get **cancelled** when combine $\phi_K < 0$ and $\phi_K > 0$ datasets
- The traditional approach is blind for the 2π factor

Interference of P_c and Λ^* chains

• Check the interference term in each ϕ_K regions using 2015 formula

Discontinuous at $\phi = 0$

Interference get totally cancelled when combining samples with $\phi_K > 0$ and $\phi_K < 0$

Proton spin axis alignment

- The initial spin axis is the same for P_c and Λ^* chain, and the final spin axis for proton should also be the same
 - The overall rotations related to proton should be the same in the P_c and Λ^* chain

Basic idea for the check

- Check the rotations related to proton involved in the amplitude formalism, for both P_c and Λ^* chains
- Use the SU2 representation for rotation operators:
 - To describe spin rotation of spin-half particle
 - To make the 2π difference visible

Rotation along z-axis:

$$R_z(\alpha) = \left(\begin{array}{cc} e^{-i\alpha/2} & 0\\ 0 & e^{i\alpha/2} \end{array}\right),$$

Rotation along y-axis: $R_y(\beta) = \begin{pmatrix} \cos(\beta/2) & -\sin(\beta/2) \\ \sin(\beta/2) & \cos(\beta/2) \end{pmatrix}$.

Rotation along any axis: $R(\alpha, \vec{b}) = R_z(\phi)R_y(\theta)R_z(\alpha)R_y(-\theta)R_z(-\phi)$

Rotations of two-body decay nodes

Proton-alignment rotation

Rotations related to proton

• Based on 2015 paper's angle definitions:

 $R_{\Lambda^*} = \underline{R(\theta_{\Lambda^*}, \vec{p}_p^{\Lambda^*} \times \vec{p}_K^{\Lambda^*})} R(\phi_K, \vec{p}_{\Lambda^*}^{\Lambda_b^0}) R(\theta_{\Lambda_b^0}, \vec{p}_{\Lambda^*}^{\Lambda_b^0} \times \vec{p}_{\Lambda_b^0}^{lab}),$

 $R_{P_{c}}^{\pm} = R(\pm \pi, \vec{p}_{K}^{A^{*}}) R(\underline{\theta_{p}, \vec{p}_{p}^{P_{c}} \times \vec{p}_{\psi}^{P_{c}}}) R(\underline{\theta_{P_{c}}, \vec{p}_{p}^{P_{c}} \times \vec{p}_{\psi}^{P_{c}}) R(\underline{\phi_{\psi}^{P_{c}}, \vec{p}_{P_{c}}^{A^{0}})} R(\underline{\theta_{P_{c}}^{P_{c}}, \vec{p}_{P_{c}}^{A^{0}}) R(\underline{\phi_{P_{c}}, \vec{p}_{P_{c}}^{A^{0}}) R(\underline{\phi_{P_{c}}, \vec{p}_{P_{c}}^{A^{0}})} R(\underline{\phi_{P_{c}}, \vec{p}_{P_{c}}^{A^{0}}) R(\underline{\phi_{P_{c}}, \vec{p}_{P_{c}}^{A^{0}})})$

 Λ^* and P_c chain results in opposite y-axis in the proton rest frame, rotate along z-axis by $\pm \pi$ to recover it.

• Use proton, instead of kaon to define Λ^* decay angle: $R_{P_c}^{\pm} = \underbrace{R(\pm \pi, \vec{p}_p^{P_c} \times \vec{p}_{\psi}^{P_c})R(\theta_p, \vec{p}_p^{P_c} \times \vec{p}_{\psi}^{P_c})R(\theta_{P_c}, \vec{p}_p^{P_c} \times \vec{p}_{\psi}^{P_c})R(\phi_{\psi}^{P_c}, \vec{p}_{P_c}^{A_b^0})R(\theta_{A_b^0}, \vec{p}_{P_c}^{A_b^0} \times \vec{p}_{A_b^0}^{lab})R(\phi_{P_c}, \vec{p}_{A_b^0}^{lab})}_{R_{\Lambda^*}} = R(\theta_{\Lambda^*}, \vec{p}_{K}^{\Lambda^*} \times \vec{p}_p^{\Lambda^*})R(\phi_p, \vec{p}_{\Lambda^*}^{A_b^0})R(\theta_{A_b^0}, \vec{p}_{\Lambda^*}^{A_b^0} \times \vec{p}_{A_b^0}^{lab}),$

 Λ^* and P_c chain results in opposite z-axis in the proton rest frame, rotate along y-axis by $\pm \pi$ to recover it.

Boosts in different chains

- Λ^* and P_c chains boost from Λ_b^0 rest frame to proton rest frame in different ways. The proton rest frame can be different in these two chains.
- For boost operators:

Boost along z-axis:
$$B_z(\gamma) = \begin{pmatrix} e^{-\gamma/2} & 0 \\ 0 & e^{\gamma/2} \end{pmatrix}$$

Boost along any axis: $B(\gamma, \vec{a}) = R_z(\phi)R_y(\theta)B_z(\gamma)R_y(-\theta)R_z(-\phi)$

Boosts of Λ^* chain $B_{\Lambda^*} = B(-y_p^{\Lambda^*}, \vec{p}_p^{\Lambda^*}) B(-y_{\Lambda^*}^{\Lambda^0_b}, \vec{p}_{\Lambda^*}^{\Lambda^0_b}),$ $B_{P_c} = B(-y_p^{P_c}, \vec{p}_p^{P_c}) B(-y_{P_c}^{\Lambda^0_b}, \vec{p}_{P_c}^{\Lambda^0_b}).$

Not used for the boost operator in spin space, just to derive the rotation operator to associate the proton rest frames from different chains

Compare two chains

• For a proper alignment, we expect

A rotation to transfer between two different proton rest frames

$$B_{\Lambda^*} B_{P_c}^{-1} R_{\Lambda^*} = R_{P_c}^{\pm}.$$

• Use a small sample of $\Lambda_b^0 \rightarrow J/\psi p K^-$ data, calculate the exact form of the matrices in the left and right side of these equations, and check the distribution of

$$D^{\pm} = \sum_{i,j} |L_{i,j} - R_{i,j}^{\pm}|^2,$$
 $D^{\pm} = 0$: Left = Right
 $D^{\pm} = 8$: Left = -Right

Results

Conclusion: Half of the candidates have an additional "-1" sign compared to the rest.

18

- Based on old formula:
 - No requirement on ϕ_K

Figure 2: Distribution of D^{\pm} , based on SU2 representation, using 2015 paper's ordering.

Conclusion: The "-1" sign is related to the sign of ϕ_K .

Results

- Based on old formula:
 - Require $\phi_K < 0$

No more than a global phase shared by all candidates

Conclusion: the proton can be well aligned with the new particle ordering

Results

• Use proton, instead of kaon to define Λ^* decay angle:

No more than a global phase shared by all candidates

Figure 5: Distribution of D^{\pm} , based on SU2 representation, using particle ordering in Ref. [1].

Conclusion: the proton can be well aligned with the new particle ordering

Results

- Use proton, instead of kaon to define Λ^* decay angle:
 - Discontinuous of the interference also disappear

Conclusion

- Final-state alignment is necessary for the construction of multi-body decay amplitudes with multiple decay chains
- For the validation of the alignment, one could directly write down rotation operators associated with each final-state particle, and check if the total effect is the same in all chains
 - Important to select a good representative to visualize all quantum effects

Thank you for your attention ! Questions or comments ?

Take the particle-2 convention

- For each $A \rightarrow BC$ decay node, add a $(-1)^{J_C \lambda_C}$ term in the amplitude
 - $\Lambda_b^0 \to \Lambda^* (\to pK) J/\psi, \Lambda_b^0 \to P_c(\to J/\psi p) K$
 - Add $(-1)^{J\psi^{-\lambda}\psi}$ for $\Lambda_b^0 \to \Lambda^* J/\psi$ decay node
 - Add $(-1)^{J_p \lambda_p}$ for $P_c \to J/\psi p$ decay node
- Decay angle of $A \rightarrow BC$ is defined using B, and the corresponding rotation aligns C to the -z direction
- Add a π rotation along y-axis, to align C to z-axis
 - For writing the amplitude of following *C* decays in a consistent way; Or for doing the final-state alignment in a consistent way if *C* is a final-state particle

•
$$d_{-\lambda_c,\lambda_c}^{J_c}(\pi) = (-1)^{J_c-\lambda_c}$$
²⁴

Redefinition of ϕ_{μ}

- The J/ψ is the "particle-2" in $\Lambda_b^0 \to \Lambda^* J/\psi$ node
- In 2015 paper, J/ψ was aligned to z-axis by a π rotation along x-axis
- Now we use particle-2 convention, corresponding to a π rotation along y-axis
- The resulting x, y axis after the π rotation is opposite. Need a redefinition of ϕ_{μ} to be consistent with particle-2 convention