

Istituto Nazionale di Fisica Nucleare

Observation of pentaquarks at the LHCb experiment

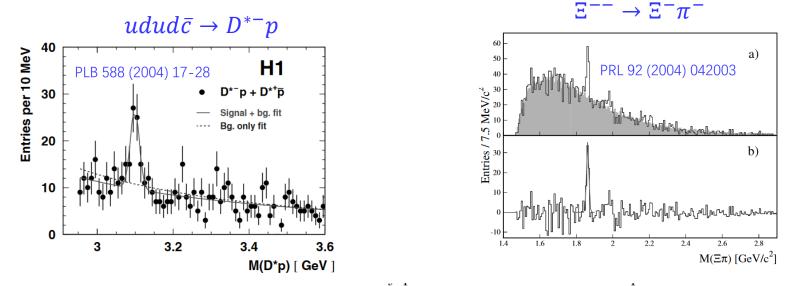
20/06/2022 Mengzhen Wang

Outlines

- History of pentaquarks
- Pentaquarks @ LHCb
 - First observation
 - Validations
 - Latest result with enlarged sample size
- Conclusions

Quark Model and pentaquark

Pentaquark discussed in 1964 when Gell-Mann and Zweig proposed the Quark Model

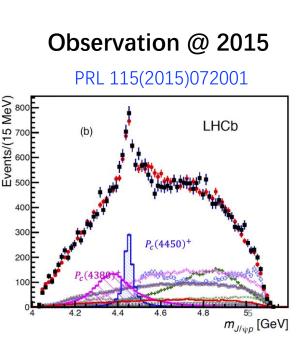

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{1}{3}}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q \bar{q} \bar{q})$, etc., while mesons are made out of $(q \bar{q})$, $(q q \bar{q} \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

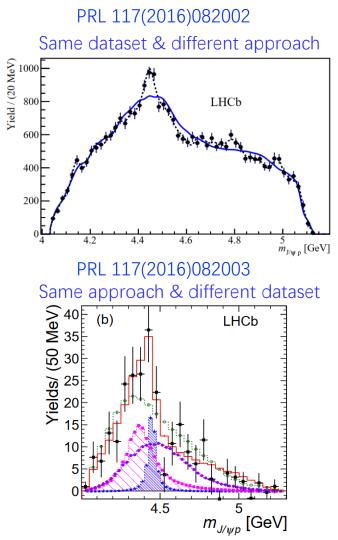
In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAA, AAAAAAA, etc., where A denotes an anti-ace. Similarly, mesons could be formed from AA, AAAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities, AA and AAA, that is, "deuces and treys".

http://cds.cern.ch/record/352337/files/CERN-TH-401.pdf

Previous "observations"

• In the 50 years after the proposal of $q\bar{q}qqq$, several "observation" of pentaquarks made but later refuted

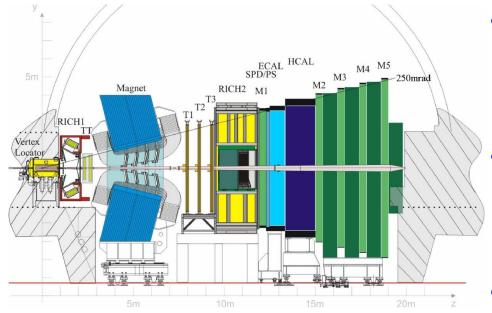



experiments did not confirm these claims [6]. In the last mention of the best known candidate from that period, $\Theta(1540)^+$, the 2006 Particle Data Group listing [7] included a statement: "The conclusion that pentaquarks in general, and that Θ^+ , in particular, do not exist, appears compelling." which well reflected the prevailing mood in the particle physics community until a study

not seen by companion experiments or further studies with larger sample size

Today's menus

Follow-up cross checks @ 2016



New analysis with X10 statistic @ 2019 PRL 122 (2019) 222001 $\Sigma_c^+ \overline{D}^0$ $\Sigma^+_{a} \overline{D}^{*0}$ Weighted candidates/(2 MeV) LHCb - data total fit background 800 $P_{c}(4440)^{+}$ NPc(4457) $P_{c}(4312)^{+}$ 200 4250 4300 4350 4400 4450 4500 4550 4600 4200 $m_{J/\psi p}$ [MeV]

The LHCb detector

- Optimized for heavy-flavor studies @ LHC
 - Single-arm and forward spectrometer, $\eta \in (2, 5)$

JINST 3 (2008) S08005, IJMPA 30 (2015) 1530022

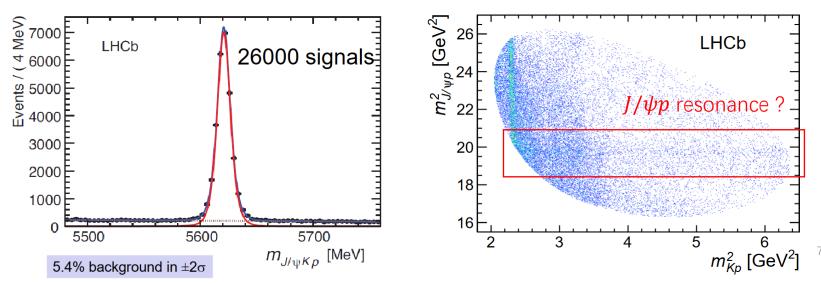
Powerful particle identification

 $\begin{array}{l} \epsilon(K \rightarrow K) \sim 95\% \quad \text{mis-ID} \ \epsilon(\pi \rightarrow K) \sim 5\% \\ \epsilon(\mu \rightarrow \mu) \sim 97\% \quad \text{mis-ID} \ \epsilon(\pi \rightarrow \mu) \sim 1-3\% \end{array}$

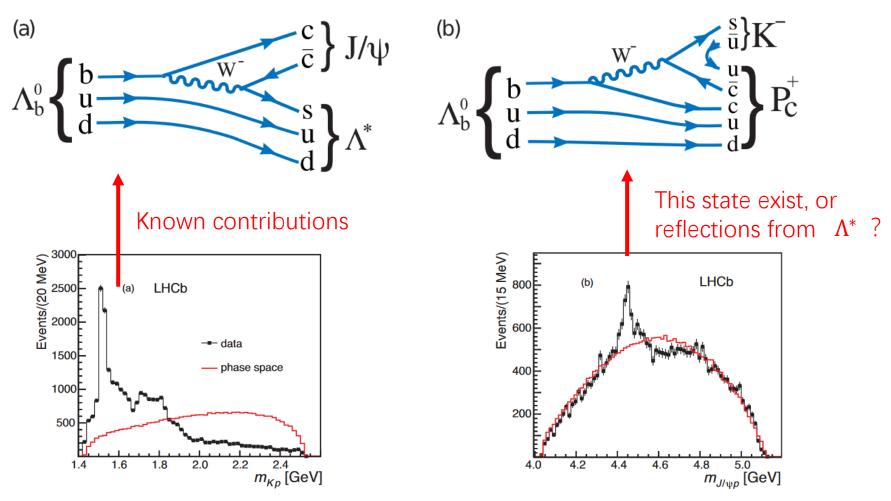
Good momentum resolution

 $\Delta p/p = 0.4 \sim 0.6\% (5 - 100 \text{ GeV}/c)$ $\sigma_m = 8 \text{ MeV}/c^2 \text{ for } B \rightarrow J/\psi X \text{ (constrainted } \mathbf{m}_{J/\psi}\text{)}$

• Precise vertex resolution

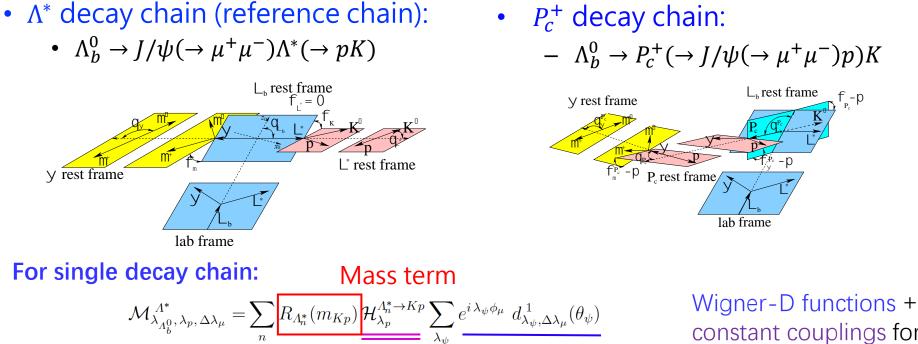

 $\sigma_{IP} = 20 \mu m$ to select long-lived beauty & charm candidates

Data sample of $\Lambda_b^0 \to J/\psi p K^-$ decay


• $\Lambda_b^0 \rightarrow J/\psi p K^-$ was observed by LHCb and used for Λ_b^0 lifetime measurement PRL 111 (2013) 102003

Primary vertex Λ_b^0 μ^+

- LHCb Run1 pp collision data, $L \sim 3 \text{ fb}^{-1}$, $J/\psi \rightarrow \mu^+ \mu^-$
- Loose preselection + further MVA-based selection



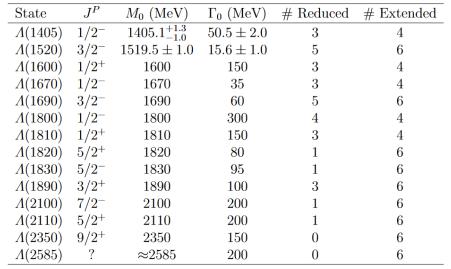
Intermediate states in $\Lambda_b^0 \rightarrow J/\psi p K^-$

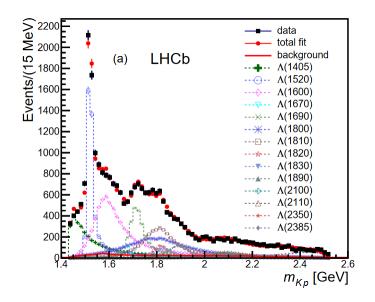
Need a technique to describe pentaquark contributions in data & reflections from Λ^* spontaneously involved

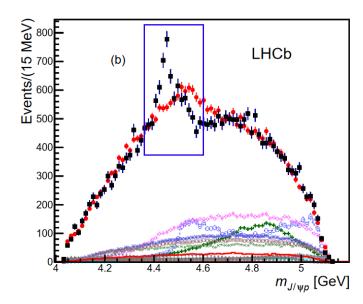
Full amplitude analysis

 $\sum_{\lambda,\mu} \mathcal{H}^{A_{n}^{*} \to K_{p}}_{\lambda_{A_{n}^{*},\lambda_{\psi}}} \underbrace{\mathcal{H}^{A_{n}^{*} \to K_{p}}_{\lambda_{\psi}}}_{\lambda_{\psi}} \underbrace{e^{i\lambda_{\psi}\phi_{\mu}} d^{1}_{\lambda_{\psi},\Delta\lambda_{\mu}}(\theta_{\psi})}_{\lambda_{\psi},\Delta\lambda_{\mu}}(\theta_{\psi})}_{\times \sum_{\lambda,\mu^{*}} \mathcal{H}^{A_{b}^{0} \to A_{n}^{*}\psi}_{\lambda_{A^{*}},\lambda_{\psi}}} \underbrace{e^{i\lambda_{A^{*}}\phi_{K}} d^{\frac{1}{2}}_{\lambda_{A_{b}^{0},\lambda_{A^{*}}-\lambda_{\psi}}}(\theta_{A_{b}^{0}}) d^{J_{A_{n}^{*}}}_{\lambda_{A^{*},\lambda_{p}}}(\theta_{A^{*}})}}_{\text{angular terms}}$

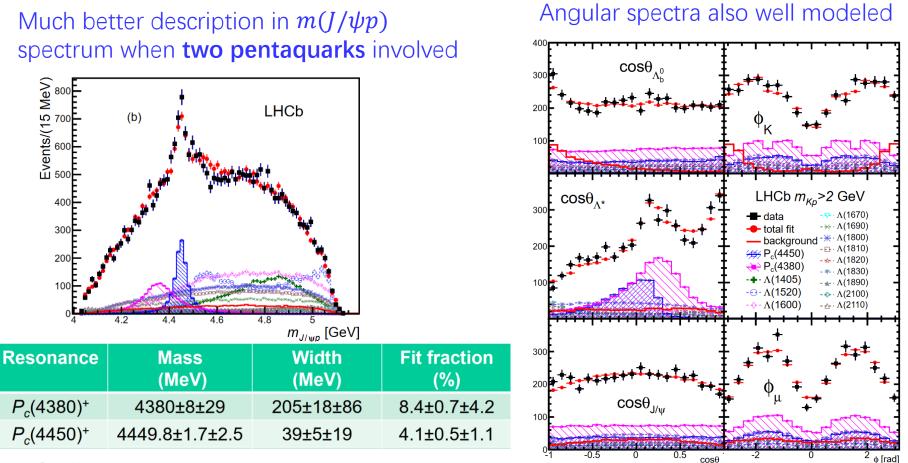
Two chains combined to get total amplitude:


Final state alignment


$$|\mathcal{M}|^{2} = \sum_{\lambda_{A_{b}^{0}}=\pm\frac{1}{2}}\sum_{\lambda_{p}=\pm\frac{1}{2}}\sum_{\Delta\lambda_{\mu}=\pm1} \left| \mathcal{M}_{\lambda_{A_{b}^{0}},\lambda_{p},\Delta\lambda_{\mu}}^{A^{*}} + e^{i\,\Delta\lambda_{\mu}\alpha_{\mu}}\sum_{\lambda_{p}^{P_{c}}}d_{\lambda_{p}^{P_{c}},\lambda_{p}}^{\frac{1}{2}}(\theta_{p}) \right| \mathcal{M}_{\lambda_{A_{b}^{0}},\lambda_{p}^{P_{c}},\Delta\lambda_{\mu}}^{P_{c}} \right|^{2}$$

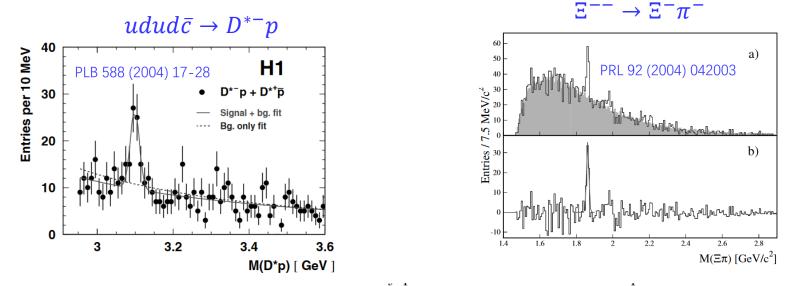

9

Λ^* resonances


- Λ^* only model cannot well describe data
- Still fails even when
 - Consider Σ^* resonance (isospin violating)
 - Add unobserved Λ^*
 - Add non-resonant *pK*⁻

Fit with pentaquark (P_c)

Significances:

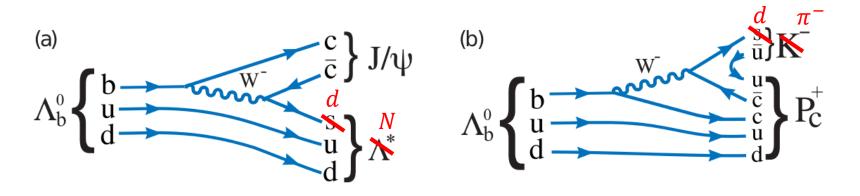

- $-1^{st} P_c (4450)^+: 12\sigma$
- $-2^{\text{st}} P_c (4380)^+$: 9 σ

Major syst. uncertainties: Λ^* model, parameterization of P_c mass shapes

Observation of intermediate states consistent with pentaquarks ($c\overline{c}uud$)

Previous "observations"

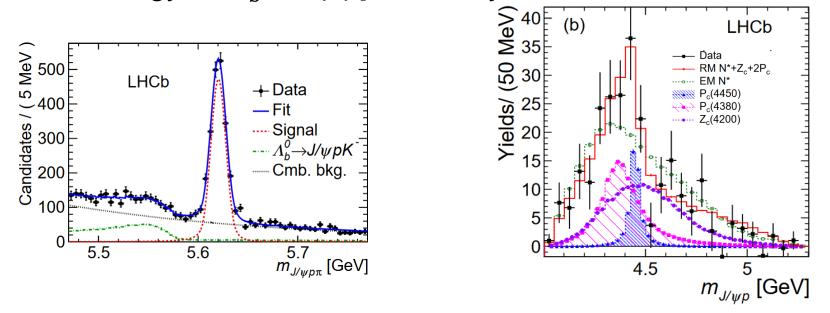
• In the 50 years after the proposal of $q\bar{q}qqq$, several "observation" of pentaquarks made but later refuted



experiments did not confirm these claims [6]. In the last mention of the best known candidate from that period, $\Theta(1540)^+$, the 2006 Particle Data Group listing [7] included a statement: "The conclusion that pentaquarks in general, and that Θ^+ , in particular, do not exist, appears compelling." which well reflected the prevailing mood in the particle physics community until a study

not seen by companion experiments or further studies with larger sample size

P_c search in $\Lambda_b^0 \to J/\psi p\pi^-$

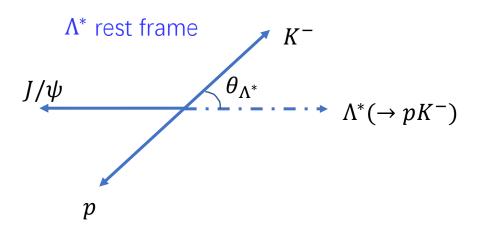

- $\Lambda_b^0 \to J/\psi p \pi^-$
 - Expect similar intermediate states as $\Lambda_b^0 \rightarrow J/\psi p K^-$
 - Cabibbo-suppressed, stat. X ~0.1

• P_c states found in $\Lambda_b^0 \rightarrow J/\psi p K^-$ should also contribute to $\Lambda_b^0 \rightarrow J/\psi p \pi^-$

P_c search in $\Lambda_b^0 \to J/\psi p\pi^-$

• Amplitude analysis on $\Lambda_b^0 \rightarrow J/\psi p \pi^-$, following similar strategy as $\Lambda_b^0 \rightarrow J/\psi p K^-$ study

- Joint significance of $P_c(4380) + P_c(4450)$ larger than 3σ
- Mass & width parameters consistent with results from $\Lambda^0_b \rightarrow J/\psi p K^-$ study


Model-independent P_c search in $\Lambda_b^0 \to J/\psi p K^-$

- Model dependence in amplitude analysis
 - Selection of states to be involved in the fit model
 - Line-shape functions of the intermediate states
 - ···

$$\mathcal{M}_{\lambda_{A_{b}^{0}}^{A^{*}},\lambda_{p},\Delta\lambda_{\mu}}^{A^{*}} = \sum_{n} R_{A_{n}^{*}}(m_{K_{p}}) \mathcal{H}_{\lambda_{p}}^{A_{n}^{*}\to K_{p}} \sum_{\lambda_{\psi}} e^{i\lambda_{\psi}\phi_{\mu}} d^{1}_{\lambda_{\psi},\Delta\lambda_{\mu}}(\theta_{\psi}) \\ \times \sum_{\lambda_{A^{*}}} \mathcal{H}_{\lambda_{A^{*}},\lambda_{\psi}}^{A_{b}^{0}\to A_{n}^{*}\psi} e^{i\lambda_{A^{*}}\phi_{K}} d^{\frac{1}{2}}_{\lambda_{A_{b}^{0}}^{0},\lambda_{A^{*}}-\lambda_{\psi}}(\theta_{A_{b}^{0}}) d^{J_{A_{n}^{*}}}_{\lambda_{A^{*}},\lambda_{p}}(\theta_{A^{*}})$$

- The angular sector are more model-independent
 angular-momentum conservation, very basic
- An angular moments analysis for a modelindependent confirmation of P_c states

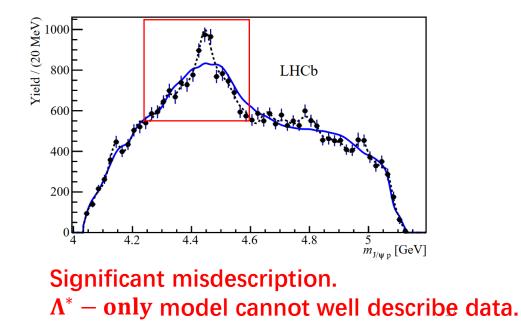
The moments analysis

 $\begin{bmatrix} 1800 \\ 1600 \\ 1400 \\ 1000 \\ 800 \\ 600 \\ 400 \\ 200 \\ 0 \\ 1.6 \\ 1.8 \\ 2 \\ 2.2 \\ 2.2 \\ 2.4 \\ m_{Kp}^{2} [GeV] \end{bmatrix}$

A fixed $m(pK^-)$ and θ_{Λ^*} lead to a fixed $m(J/\psi p)$

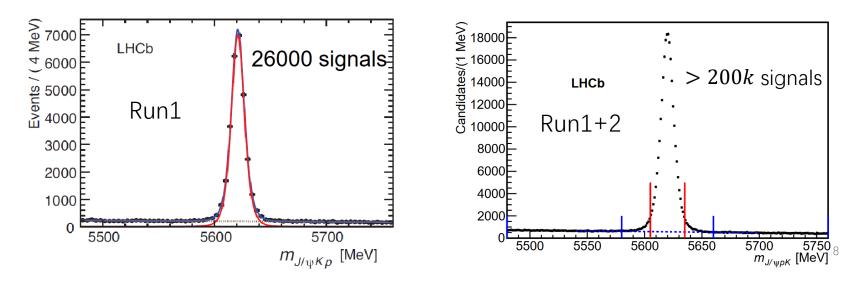
Split the dataset into different $m(pK^-)$ slices. For each subset, if we know θ_{Λ^*} distribution, we can get the contribution to the $m(J/\psi p)$ spectrum


Features of angular spectrum → mass spectrum

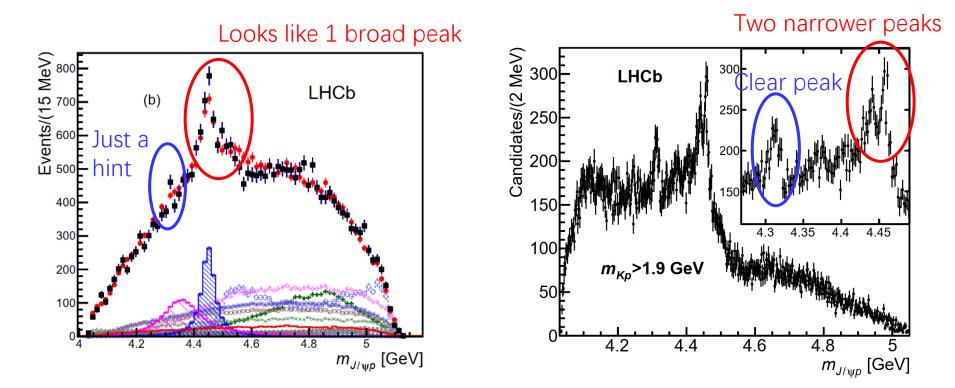

The moments analysis

- If consider only Λ^* chain

$$dN/d\cos\theta_{A^*} = \sum_{l=0}^{l_{\max}} \langle P_l^U \rangle P_l(\cos\theta_{A^*}), \qquad l_{max} = 2J_{\Lambda^*,max}$$


• Use $\cos\theta_{\Lambda^*}$ distribution in data to obtain all $< P_l^U >$, assign a reasonable $J_{\Lambda^*,max}$, remove higher order terms

$\Lambda_b^0 \rightarrow J/\psi p K^-$ re-study using X10 data


- First pentaquark observation @ LHCb is based on Run1 data, $L \sim 3 \text{ fb}^{-1}$ @ 7,8 TeV
- More data available in 2019 after Run2 operation
 - $L \sim 6 \text{ fb}^{-1}$, $\sqrt{s} = 13 \text{ TeV} (\times 4 \text{ b-production than Run1})$
- Updated event selection:
 - Use particle-identification info as input of MVA training
 - Efficiency X 2 at the same BKG level

Finer structures in $m(J/\psi p)$ spectrum

Run1

Run1+2

Properties of the new pentaquarks

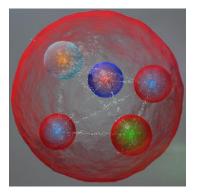
- A 1D mass fit to subtract properties of peaking signals
- $m(pK^-)$ -dependent weight assigned to subtract Λ^* contribution
- Breit-Wigner for P_c shapes
- High-order polynomial for flat background

	$\Sigma_c^+ \overline{D}^0 \qquad \Sigma$	$\overline{D}_{c}^{+}\overline{D}^{*0}$
Meighted candidates/(2 Me/ Meighted candidates/(2 Me/ Meighted candidates/(2 Me/ Meighted candidates/(2 Me/ Meighted candidates/(2 Me/ Meighted candidates/(2 Me/ Me/ Meighted candidates/(2 Me/ Me/ Me/ Me/ Me/ Me/ Me/ Me/		LHCb
– – – – – – – – – – – – – – – – – – –		
Meight Action Ac		WHAT HALL LAND
400 400	$(4242)^{+}$ $P_{c}(4440)^{+}$	ייןי קאָזאָזיין איזי (P _c (4457) ⁺
200	_c (4312) ⁺ / ^c (4440)	
4200 4250 43	300 4350 4400 44	50 4500 4550 4600
		$m_{J/\psi p}$ [MeV]

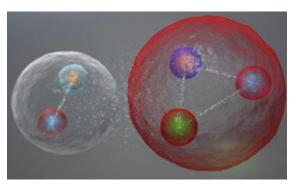
Significance of $P_c(4312)^+$: 7.3 σ

Significance of $P_c(4440)^+$, $P_c(4457)^+$ two-peak structure: 5.4 σ

State	$M \ [\mathrm{MeV}]$	$\Gamma \ [{\rm MeV}]$	(95% CL)	$\mathcal{R}~[\%]$
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-} ^{3.7}_{4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} {}^{5.7}_{1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

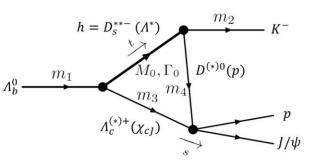

Conclusion

- Intermediate states consistent with pentaquarks observed by LHCb in 2015, using the $\Lambda_b^0 \to J/\psi p K^-$ decay
- Evidence of the same states seen in $\Lambda_b^0 \rightarrow J/\psi p \pi^-$ in 2016
- Model-independent studies prove the existence of exotic structures in $\Lambda_b^0 \to J/\psi p K^-$ process in 2016
- With LHCb Run2 data available, peaking structures in the $J/\psi p$ mass spectrum are further investigated. Three new P_c states announced in 2019


Open questions

Pentaquarks observed in experiment, but the nature still unclear

Compact?



JHEP12(2015)128, PLB749(2015)289–291, PLB793(2019)365-371, PRD95(2017)5… Hadronic molecule ?

PRL115(2015)122001, PLB753(2016)547–551, PRC85(2012)044002...

Near-threshold kinematic effects ?

PRD92(2015)071502(R)…

What we can do in experiment ?

• Spin-parity measurement

	Compact	Molecule	Triangle
$P_c(4312)^+$	$\frac{3}{2}^{-}$	$\frac{1}{2}^{-}$	$\frac{1}{2}^{-}$
$P_{c}(4440)^{+}$	$\frac{3^{+}}{2}$	$\frac{1}{2}^{-}(\frac{3}{2}^{-})$	$\frac{1}{2}^{+}$
$P_{c}(4457)^{+}$	$\frac{5^{+}}{2}$	$\frac{3}{2}^{-}(\frac{1}{2}^{-})$	$\frac{1}{2}^{+}$

 Search for new pentaquarks

> Amplitude analysis would be a powerful tool for these targets !

Compact model PLB793(2019)365-371			
J^P	Mass(MeV)		
$1/2^-$	3830 ± 34		
	4150 ± 29		
$1/2^+$	4030 ± 39		
	4351 ± 35		
	4430 ± 35		
$3/2^{+}$	4040 ± 39		
	4361 ± 35		

Molecule

PRL122(2019)242001

 J^P Width(MeV) Mass(MeV) $\frac{3}{2}^{-}$ 8.3 - 9.2 4376.1 - 4377.0 $\frac{1}{2}^{-}$ 25.7 - 26.5 4500.2 - 4501.0 $\frac{3}{2}^{-}$ 15.9 - 16.1 4510.6 - 4510.8 $\frac{5}{2}^{-}$ 3.2 - 3.5 4523.3 - 4523.6

Thank you for your attention !

Any questions or comments ?