Attivita' JLab12

Marco Mirazita

Consiglio di Laboratorio – 6 luglio 2022

1

The CLAS12 spectrometer at JLab

The Thomas Jefferson National Accelerator Facility, Newport News, Virginia, USA

Continuos Electron Beam Accelerator Facility (CEBAF)

- Beam delivered simultaneously in 4 Halls
- Max beam energy 12 GeV in Hall D
- high beam current ~100 μ A

CEBAF Large Acceptance Spectrometer (CLAS)

- Luminosity up to 10³⁵ cm⁻² s⁻¹
- Max beam energy 10.6 GeV
- High polarization electron beam
- H and D targets (polarization), nuclear targets
- Wide acceptance

The CLAS12 physics progam in Hall B

2018-20 polarized electron beam on unpolarized H and D targets: SIDIS, exclusive channels, hadron spectroscopy,...

- 2020-21 polarized electron beam on D target (BONUS experiment): free neutron structure functions
- 2021 polarized electron beam on nuclear tagets (electrons for neutrinos exp.): measurement of eA data
- **2021** First publications in SIDIS measurements with H target
- **2022** 4 publications with CLAS12 data on DIS measurements, 2 under review, many more in advanced stage

4

A Ring Imaging CHerenkov detector for CLAS12

A large fraction of the approved CLAS12 physics program requires good kaon identification

- flavor separation in SIDIS

RICH goal:

- hard exclusive meson production
- exotic hybrid meson spectroscopy

CLAS12 provides good kaon ID only at low and high momentum regions

 pion production rate is one order of magnitude higher than kaon

> $\pi/K/p$ identification from 3 up to 8 GeV/c and 25 degrees ~4 σ pion-kaon separation for a pion rejection factor ~ 1:500

The RICH project

- 2010 First studies initiated by Patrizia Rossi (LNF) and Evaristo Cisbani (RM1)
- 2011 First test beam at CERN
- 2012 Intensive campaign of test beam at CERN and LNF
- 2013 Technical Design Report Project for 2 RICH modules approved by DOE and JLab Premiale funding from MIUR for the construction of 2 RICH sectors
- **2014** Start construction of first module
- January 2018 First RICH module installed in CLAS12 CLAS12 start data taking at 11 GeV with unpolarized hydrogen target
- 2018 Start contruction of second module
- June 2022Second RICH module installed in CLAS12CLAS12 start data taking with polarized targets

The two RICH modules were both installed as planned in the JLab data taking schedule

Institutions

INFN: LNF, Fe, RM1/ISS, Ge, Ba

Glasgow U. (UK)

Gutemberg U. (Mainz, Ge)

Jefferson Lab (USA)

Argonne Lab (USA)

Duke, Duquesne, GWU, UConn (USA)

UTFSM (Valparaiso, Chile)

Kyungpook U. (Korea)

The CLAS12 RICH

- very light mechanical structure in aluminum and carbon fiber
 0 4.2 m high, 4 m wide, 1.2 m deep
- 102 aerogel tiles, mostly 20x20 cm2, thickness 2 and 3 cm
 - assembled in 3 layers
- 7 planar glass mirrors
 - 2 frontal, 5 lateral
 - total about 7 m² surface
- 10 spherical mirrors in carbon fiber
 - \circ assembled on a carbon fiber frame
 - total about 4 m² surface
- 391 Multi-Anode PMT Hamamatsu H12700
 - 25k independent pixels
- 138 readout units
 - adapter+MAROC+FPGA per unit
 - binary readout, TDC information (leading and trailing edges)
 - adjustable preamp gain and thresholds

PID with RICH-1

1. Ray tracing for the Cherenkov angle reconstruction

2. Likelihood approach for the PID

RICH Particle ID performance improved after first run of alignment of the internal elements with "brute force" approach:

- move and rotate each element at once
- choose the set of alignment parameter that minimizes Cherenkov angle differences

64524 8.694 2.152 2.023

0.561

→ works for simple topologies (no spherical mirrors)

Selecting events e p \rightarrow e K+ X and looking at the missing mass

• X can be Λ , Σ 0, ... but not a nucleon

RICH-2 construction and assembly timeline

2017	First aerogel tiles
2021	Completion of the mechanical structure
	Completion of planar mirrors
	Completion of the MAPMT production
	Completion of aerogel production
2/2022	Completion of the readout electronics
4/2022	Completion of the spherical mirror frame
May 23, 2022	Spherical mirrors at JLab → The final assembly started

Main assembly works carried out during 3 visits of INFN personnel

- January Mechanical structure assembly
- March-April Start assembly and test of the electronics Assembly test of various components
- May
 Assembly of the internal elements
 - May 30 Detector sealed, final tests
 - June 1Detector transported in the experimental hall
 - June 2 Installation in Hall B
 - June 3 Commissioning completed
 - June 8 First data with 2 RICH modules

RICH-2 assembly and installation in pictures

RICH-2 assembly and installation in pictures

RICH-2 assembly and installation in pictures

Looking inside the detector

Monitoring plots with beam

RICH-II

Despite the delays, pandemic ... the detector was assembled, tested and installed right on time for the RG-C run!

Congratulations to the whole team!

See M. Mirazita's talk

<u>Summary</u>

Nonostante le complicazioni dovute al COVID-19 degli ultimi 2 anni, l'installazione del secondo modulo RICH e' stata completata il 2 giugno, come previsto in vista dell'inizio della presa dati con bersaglio polarizzato longitudinalmente.

Il merito di questo successo va a tutto il personale che ha lavorato al progetto del RICH:

- i colleghi INFN passati e presenti, in particolare delle sezioni dei LNF e di Ferrara
- il personale del JLab e degli altri istituti americani
- l'amministrazione e i servizi dei LNF

Ma il mio ringraziamento particolare va a Dario e Sandro per la passione e l'impegno che ci hanno messo in questi 10 anni di lavoro

