

T track reconstruction

Among others: A. Hennequin, C. Agapopoulou, S. Aiola, L. Calefice, A. Oyanguren, B. Kishor Jashal, L. Pica, V. Svintozelskyi, <u>L. Henry</u>, R. Quagliani

Gardagno del Garda, 28/09/2022

Introduction: the LHCb detector

Introduction: the LHCb detector as a family of tracks

- VELO + SciFi (+UT): LONG.
 - Bread and butter for physics, best resolution.
- UT + SciFi: DOWN.
 - Useful if you are studying K_s and Λ . Do the same as LONG, just a bit worse.
- VELO: VELO.
 - Primary vertex determination
- VELO + UT : UPSTREAM.

- SciFi only: T-tracks:
 - Secondaries, very-long-lived particles, unlucky K_s and Λ hadrons.

Introduction: LHCb as a succession of triggers

- Collision rate and event size are unmanageable without a fast selection = trigger.
- Strategy has changed quite a bit between Run 2 and Run 3, will focus here on Run 3.

- Gist is:
 - HLT1: needs to be **fast**. Any decay with no dedicated reconstruction will **lose efficiency**.
 - HLT2: needs to be **complete**. Any decay with no full reconstruction will be **lost**.

T track reconstruction at HLT2 level (Run 3)

Hybrid seeding: overall strategy

- SciFi: three stations arranged in a x-u-v-x geometry, u and v being layers titled by a +/- 5° stereo angle.
 - Easier to get x coordinate than y coordinate.
 - But ~only residual B_y field \rightarrow simpler y trajectory (line).
- 2.5m long fibres \rightarrow only give one coordinate, not two.

LHCb simulation

2000

1000

□1000

2000

2000

Hit y [mm]

What you think you see

 10^{-4}

2000

Hits $/ \text{cm}^2 / \text{event}$

 10^{-2}

6

5

Arbitrary

• Each iteration starts with different pair of layers in T1 & T3.

0

LHCb simulation

2000

What you really see

ๅ๎๚ๅๅ_{ฅฃ฿}(ฅ๚ๅ๛ๅๅ[๛]๚๚๛๚๛๛๛ๅ๛๛๚๛๛๛๛

1000

- For all hits in the first layer, **draw a line from (0,0,0)**: this is the trajectory of an infinite momentum particle coming from the luminous region.
- But we are not looking for infinite momentum particles → tolerance around the projected position.
- Right: evolution of the tolerance needed as a function of the minimum momentum considered.
 - Blue: theoretical curve, Red: fit on MC.

- Not infinite momentum is equivalent to saying that the second hit is not on the line between the first hit and (0,0,0), which is equivalent to $\mathbf{x}_0 \mathbf{!} = \mathbf{0}$.
- X₀ is in fact a **momentum measurement**, by the displacement in the magnetic field of the magnet (left plot).
- There is still some field in the SciFi → this momentum measurement helps refine a tolerance window in a middle layer (middle plot))
- Two-hit window was hundreds of mm wide, this one is few mms.

- Now we can drop any reference to the origin: we have the trajectory in the SciFi: looking for the 3 remaining hits with a ~ 1mm tolerance.
- Track is then fitted, and we apply quality criteria.
- At this stage, we have 'XZ' segments. Lots of them are ghosts, and they have no y information.

Adding U/V hits: Hough cluster

11

- From the fit to the XZ track, we have a $\mathbf{x}(\mathbf{z})$ equation \rightarrow positions in every tilted layer.
- For each tilted layer, collect compatible hits and convert them to a y measurement.
- Two hypotheses:
 - Trajectory inside the SciFi is a line: $y(z) = a + t_y * z$
 - Tracks come from the origin following a line: $y(z) = t_y * z \rightarrow y/z = constant$.
- We bin the t_y values measured and look for accumulated values: Hough cluster.
- Then fit the track and apply quality criteria \rightarrow done!

Performances

- Efficiency on tracks from decays far away from the origin is still rather good (> 80%)
 - No official figure, unfortunately.
- Fast enough to run 'first', to clean the SciFi environment for other algorithms to use the remaining hits.

T track reconstruction at HLT1 level

Porting the seeding to HLT1: why and how?

- T tracks are ingredients to Long and Down tracks, and only way to access Down tracks.
 - Huge statistical price to pay when no HLT1 line \rightarrow bottleneck for many analyses.

- Current Long track reconstruction in HLT1 has to cut low p_T tracks
 - Impact on charm, strange, soft physics.
- Switch to HLT1 mindset: bulk of the work is hard combinatorics → **perfect for GPUs**.
- Adapting an algorithm to GPUs is a bit more than changing the framework
 - Trade-offs e.g. number of variables in memory and number of calculations have to be considered.
- Take-away message for GPU developing: benchmark, benchmark, benchmark. You rarely know from first principles what is going to be better.

Choosing the parallel scheme

For XZ track reconstruction:

- Form triplets in a first parallel scheme \rightarrow uses a lot of memory but is timing efficient.
- For each triplet, promote them to full tracks.

• For U/V hit addition:

- Parallelise only on XZ tracks.
- Adapt the Hough clustering to a "xz-like approach":
 - iterate over all possible hits in a first seeding layer.
 - If unsuccessful, do the same in a second seeding layer, to cover for inefficiencies.

Clone killing:

- Iterations are kept and produce lots of clones: most tracks are reconstructed twice.
- Voting algorithm with O(n) algorithm employed to get rid of clones.

Performance of T track reconstruction in HLT1

- 'Saturation' value a bit lower for high momentum tracks (- 2-3%) → normal considering we cut a few corners.
- Large efficiency at low p_T → gain in soft, charm physics compared to other types of reconstruction.

Seeding in HLT1 expected to have a large impact on study of K_s , Λ , and maybe LLPs (see next presentations)

Conclusion

• T tracks are a key ingredient to the LHCb tracking strategy, but rarely used by themselves.

- Obtained through the Hybrid Seeding, which has been developed for HLT2 mindset (don't lose anything).
 - Fast and flexible, covers a lot of physics cases.

- Overhaul of the seeding and exploitation of GPU capabilities made it possible to add it to HLT1:
 - Expected increased statistics for LLPs, K_s , Λ .
 - Alternative path to Long-track reconstruction with much higher low- p_T efficiency.
 - Article being written.
- Exciting times ahead for T tracks: maybe we can use them for themselves?