Possibility of spin precession in high-field magnet

Andrea Merli¹ ¹INFN and Università degli Studi di Milano

2nd Workshop on electromagnetic dipole moments of unstable particles

27th September 2022

European Research Council Established by the European Commission

High-field dipole magnet

F, F, F, R

45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet

Seungyong Hahn^{1,2}, Kwanglok Kim¹, Kwangmin Kim¹, Xinbo Hu¹, Thomas Painter¹, Iain Dixon¹, Seokho Kim^{1,3}, Kabindra R. Bhattarai^{1,4}, So Noguchi^{1,5}, Jan Jaroszynski¹ & David C. Larbalestier^{1,4}*

https://doi.org/10.1038/s41586-019-1293-1

Nature 570 (2019) 496

World record for direct-current magnetic field

Could we replace the crystal with a dipole magnet?

Physics opportunities?

LBC3 after 45.5-T test

Main idea

- Uncertainty on dipole moments (DM): The polarisation P depends on the production mode •
- $\sigma_{DM} \propto \frac{1}{P\Phi\sqrt{N}}$
- Bent crystal (Scenario1):
 - High precession angle $\sim \mathcal{O}(0.1 1 \text{ rad})$
 - Low channeling efficiency $\,\sim\,10^{-4}$
 - Induce spin precession only for positively charged particles
- High-field dipole magnet (Scenario2): •

SEL:DØM

- Low precession angle $\,\sim\,10-100\,\,\rm{mrad}$
- High channeling efficiency ~ 1
- Induce spin precession for all fermions

- The precession angle $\Phi \propto B$

Simulation

- The target is the same as the crystal setup, factored out and not simulated here
- Since beam spot << vertical dimensions, all the particles are supposed to be produced at (0,0,0)

- Definition of
$$\overrightarrow{\Omega}_{MDM}$$
, $\overrightarrow{\Omega}_{EDM}$ and $\overrightarrow{\Omega}_{TH}$ is given in

SELIDOM

$$\begin{cases} \frac{d\vec{x}}{dt} = \vec{\beta} c \\ \frac{dE}{dt} = cq \vec{\mu} \cdot \vec{\beta} \\ \frac{d(\vec{p} c)}{dt} = cq \left(\vec{\mu} + c \vec{\beta} \times \vec{B} \right) \\ \frac{d\vec{s}}{dt} = \vec{s} \times \left(\vec{\Omega}_{MDM} + \vec{\Omega}_{EDM} + \vec{\Omega}_{TH} \right) \end{cases}$$

n EPJC 77 (2017) 181

Generation of particles

From ~100 GeV to multi-TeV energies

SELIDOM

Generated different baryon species in pp fixed-target collisions with Pythia (7 TeV proton + p at rest) Extremely long processing time for b-baryons: assume same γ as given by c-baryons, $\Lambda_c^+ \to \Lambda_b^0$, $\Xi_c^+ \to \overline{\Xi}_b^+$

Yoke aperture

No precession for the baryons emitted in the $\theta_v = 0$ plane (horizontal) due to spin parallel to B •

Parity conservation the spin is perpendicular to the production plane

$$\frac{s_0}{|s_0|} = \frac{\overrightarrow{p}_{\Lambda_c^+} \times \overrightarrow{p}_{BEAM}}{|\overrightarrow{p}_{\Lambda_c^+} \times \overrightarrow{p}_{BEAM}|}$$

$$|s_0| = -0.9(1 - e^{-0.4p_T^2})$$

Aperture magnet yoke preferably in the direction of the magnetic field

SEL:DOM

- Aperture radius ~ 0.02 rad in 20 cm = 0.4 cm
- The detector has to cover the forward region -pseudorapidity $\eta \sim 7 \theta \sim 0.001$ rad -> challenging

Magnet occupancy

- High particle flux could interfere with the operations of the magnet
- Higher yoke aperture, lower the flux, higher the cost
- Need to find a balance

SELIDOM

Possibility of spin precession in high-field magnet - Andrea Merli

Expected precession angles for Λ_c^+ and Λ_b^0

SELIDOM

Typical decay length for Λ_c^+ and Λ_b^0

Charm baryons decay length ~ 10 mm < b-baryons decay length ~ 70 mm

SEL:DØM

Possibility of spin precession in high-field magnet - Andrea Merli

11

Number of events for charm baryons

- Total number of expected Λ_c^+ signal yields = 24.6×10^6
- Assumed parameters (PRD 103 (2021) 072003):
 - Target thickness = 2cm
 - Effective branching ratio = 18.29% (sum of different decay modes)
 - Detector efficiency = 20%
 - Production cross section (Λ_c^+) = 10.6 μ b/nucleon
 - PoT = 1.37E13
- Similar number of Ξ_c^+ particles

Sensitivity for Λ^+_{c}

- Sensitivity on $\mu_{\Lambda^+_c}$ at 0.05% with magnet at 20 T, x2 (3-4) better than crystal in IR3 (LHCb)
- As expected, the sensitivities are linear in B: the higher the better
- Optimal size of the magnet ~20-40 cm (compact) due to the small lifetime of c-baryons)
- Unique possibility with magnet setup: measurement of negatively charged and neutral particles dipole moments
- CPT test with particle/antiparticle magnetic • dipole moment

- With the magnet setup the high efficiency allow to reconstruct enough b-baryons to aim to measure their dipole moments
- Total number of expected $\Lambda_b^0 \to \Lambda_c^+ (\to pK\pi)\mu\nu$ signal yields = 26.2×10^3 :
 - Production cross section in fixed target collision $\sigma_{b\overline{b}} = 43.6 \text{ nb}$ •
 - Fragmentation fraction $f_{b \to \Lambda_b} = 7 \%$ •
 - Branching fraction BR = 0.68 %
 - Reconstruction efficiency $\varepsilon_{det} = 12\%$ •
 - Decay asymmetry parameters $\alpha = 0.4$ (for sensitivity) •
 - $PoT = 10^{15}$

SELIDOM

Sensitivity for Λ_b^0

- As expected, the sensitivities are linear in B: the higher the better
- Optimal size of the magnet ≥ 40 cm (for b-baryons)
- Aim to measure $\mu_{\Lambda^0_{\scriptscriptstyle L}}$ with sensitivity of 10%
- Unique possibility with magnet setup: measure b-• baryons dipole moments: for crystal low number of yields due to low channeling efficiency
- CPT test with particle/antiparticle magnetic dipole moment

- The magnet setup provide higher sensitivity to dipole moments wrt crystals
- Enlarge the physics reach of dipole moments measurements to neutral, negatively charged particles, b-baryons and τ lepton (main production from $D_s^- \rightarrow \tau^- \nu$ decays)
- High-filed dipole magnet is required (technologically feasible?):
 - 20/40 T magnet field
 - Longitudinal size of ~40cm
 - Radius transversal size of 0.5/1 cm compatible with radiation?

