Charm baryon amplitude analyses and polarization measurements

Daniele Marangotto

INFN and Università degli Studi di Milano, Italy

2nd SELDOM workshop, Gargnano del Garda, 26th Sep 2022

Charm AmAn & P

26/09/2022

1/21

Motivation: Baryon amplitude analyses

- Spectroscopy
- Baryon decays often feature complicated phase-space structures
- Excellent place to search for new baryonic and exotic pentaquark states
- Parity-violation
- Measurement of decay asymmetry parameters
- CP-violation
- Still unobserved for baryons
- Comparison of baryon-antibaryon amplitude models or basis to tailor model-independent searches
- Resonance interference patterns can enhance sensitivity

Motivation: Polarization

- Baryon amplitude analyses can be used to measure baryon polarization vector **P**
- Full phase space analysis needed (Dalitz + decay orientation d.o.f.)
- Polarization is excellent probe for baryon production physics, with no meson counterpart (see *e.g.* JHEP 1511 (2015) 067)
- Strong production: anchor points for low-energy QCD
- Weak production: additional observable for New Physics tests
- Once amplitude model is determined, can be applied to other polarization measurements
- For heavy baryons, multibody decays provide best statistics
- $pK^{-}\pi^{+}$ is the main decay channel of Λ_{c}^{+} (BF = 6.28%), with excellent reconstruction efficiency
- Essential for heavy baryon electromagnetic dipole moments measurement via spin precession in bent crystals (see PRD **103** (2021) 072003 and Refs therein)
- SELDOM ERC project

Daniele Marangotto (INFN-Milano/UNIMI)

Formalism for baryon amplitude analysis

- Full phase space amplitude analyses needed better understanding of baryon decay amplitudes
- Issues with rotational invariance observed in helicity formalism based $\Lambda_c^+ \to p K^- \pi^+$ amplitude model
- Traced back to incorrect spin state definition among different decay chains
- Basic quantum-mechanical properties of spin states under rotations neglected before
- Formalism adapted for decays featuring different interfering decay chains, AHEP (2020) 6674595
- Developed general method to ensure same definition of final particle spin state (spin matching) among different chains
- Supersedes and amends method used in previous analyses, notably LHCb pentaquark discovery paper *PRL 115 (2015) 072001*

Formalism for baryon amplitude analysis

- Demonstrated possibility to simultaneously determine Λ⁺_c → pK⁻π⁺ amplitude model and Λ⁺_c polarization AHEP (2020) 7463073
- Analytical study of the constraints posed by the amplitude fit to the decay rate
- Amplitude fit to pseudodata generated with toy $\Lambda_c^+ \to \rho K^- \pi^+$ description
- Results:
- Interference effects among different decay chain contributions are crucial: give sensitivity to single helicity couplings and to polarization magnitude
- Non-zero polarization needed to determine entirely the amplitude model
- Conditions met by $\Lambda_c^+ \to p K^- \pi^+$ decays from weak production, having significant Λ_c^+ polarization
- Promptly-produced Λ⁺_c → pK⁻π⁺ decays have insufficient polarization to fully determine amplitude model

Analyses in LHCb

- LHCb provides very large samples of charm baryon decays, from beauty hadron semileptonic (SL) decays or from prompt *pp* collisions
- SL samples studied to determine amplitude models for polarization measurements
- Large polarization from parity-violating weak decay gives full sensitivity on decay amplitude
- Cleaner samples with more regular detector efficiency, suitable for amplitude fit with tens of free parameters
- Larger prompt samples useful to study kinematic-dependent production polarization
- Application of the polarization measurement method with amplitude analysis
- Study of strong production mechanism at 13 TeV center-of-mass energy

Analyses in LHCb

- $\Lambda_c^+ \rightarrow p K^- \pi^+$ amplitude analysis from SL production completed (DM @ INFN Milano), <u>arXiv:2208.03262</u>
- Amplitude model available for Λ_c^+ spin precession and polarization measurements, *e.g.* in p-gas collisions
- Prompt $\Lambda_c^+ \to p K^- \pi^+$ analysis ongoing (L. Henry, E. Niel @ CERN, IJCLAB Paris)
- Preliminary results obtained, with cross-check of amplitude model
- $\Xi_c^+ \rightarrow p K^- \pi^+$ SL & prompt analyses ongoing (DM, S. Libraton @ INFN Milano)
- Polarimeter and study of production polarization also for the \varXi_c^+ charm and strange baryon
- Preliminary results obtained
- This talk will cover activity @ INFN Milano

$\Lambda_c^+ \rightarrow \rho K^- \pi^+$ SL candidates selection

- Tight selection of $\Lambda_c^+ \rightarrow p K^- \pi^+$ candidates based on PID and topological information
- Huge sample available
- 1.27 M from 2016
- Very small combinatorial background, negligible physical contributions
- Fit performed on subsample of 400k candidates (systematic > statistical uncertainties)

$\Lambda_c^+ \rightarrow \rho K^- \pi^+$ amplitude analysis

- Code developed basing on <u>TensorFlowAnalysis</u> package, adapted for full phase space 5D amplitude fits
- Amplitude model built from contributions visible in the Dalitz plot and PDG resonances
- Contributions improving the fit quality are retained
- Those with similar quality considered for systematic uncertainty evaluation

Λ_c^+ polarization frame

- Polarization measured in two Λ⁺_c helicity rest frames, with orthogonal components defined from the muon direction
- Laboratory frame: no reconstruction uncertainties
- Approximate *B* rest frame: closer to semileptonic decay physics

$$\hat{\boldsymbol{z}}_{A_{c}^{+}} = \hat{\boldsymbol{p}}(A_{c}^{+}) \\ \hat{\boldsymbol{x}}_{A_{c}^{+}} = \frac{\boldsymbol{p}(A_{c}^{+}) \times \boldsymbol{p}(\mu^{-})}{|\boldsymbol{p}(A_{c}^{+}) \times \boldsymbol{p}(\mu^{-})|} \times \hat{\boldsymbol{p}}(A_{c}^{+}) \\ \hat{\boldsymbol{y}}_{A_{c}^{+}} = \hat{\boldsymbol{z}}_{A_{c}^{+}} \times \hat{\boldsymbol{x}}_{A_{c}^{+}} \qquad \hat{\boldsymbol{y}}_{A_{c}^{+}} \qquad \hat{\boldsymbol{y}}_{A_{c}^{+}} \equiv \hat{\boldsymbol{p}}(A_{c}^{+})$$

- Longitudinal (P_z) and transverse (P_x) polarisation are T-even, while normal (P_y) polarisation is T-odd
- *P_y* can be produced only by T-violation or (EM) final state interactions, see Sozzi, *Discrete* symmetries and CPV

<u></u>

$\Lambda_c^+ ightarrow p K^- \pi^+ \; {\rm model}$

- Determined a default model (Figure)
- All parameters measured
- Alternative models with similar quality considered for systematic uncertainties
- Polarization weakly dependent on specific amplitude model

26/09/2022

$\Lambda_c^+ \to \rho K^- \pi^+$ amplitude analysis

• Main contributions:

Resonance	Fit Fraction (%)		Stat. Unc.		Model Unc.		Syst. Unc.
Δ^{++} (1232)	28.60	\pm	0.29	±	0.76	\pm	0.16
K*(892)	22.14	\pm	0.23	\pm	0.64	\pm	0.04
<i>K</i> ₀ *(1430)	14.7	\pm	0.6	\pm	2.7	\pm	0.1

- Large contribution in $m(pK^-) \approx 2 \, {
 m GeV}$ region seen, where no clear resonances are reported by PDG
- Described as $J^P=1/2^-$ state, with mass 1970 \pm 4 \pm 13 $\,{\rm MeV}$ and width 148 \pm 7 \pm 18 $\,{\rm MeV}$
- Compatible with PDG $\Lambda(2000)$

Λ_c^+ polarization

- Precision measurement of the Λ⁺_c polarization vector
- Uncertainties order 0.01
- Large polarization measured in both polarization systems
- Λ_c^+ HF from laboratory: more transverse (P_x) than longitudinal (P_z), $P \approx 66\%$
- Λ_c^+ HF from approx *B* rest frame: more longitudinal than transverse, $P \approx 69\%$
- Normal polarization (*P_y*), sensitive to time-reversal violation effects and final-state interactions, compatible with zero in both systems

Component	Value (%)				
P_x (lab) P_y (lab) P_z (lab)	$\begin{array}{c} 60.32\pm0.68\pm0.98\pm0.21\\ -0.41\pm0.61\pm0.16\pm0.07\\ -24.7\pm0.6\pm0.3\pm1.1 \end{array}$				
P_x (approx B) P_y (approx B) P_z (approx B)	$\begin{array}{c} 21.65\pm 0.68\pm 0.36\pm 0.15\\ 1.08\pm 0.61\pm 0.09\pm 0.08\\ -66.5\pm 0.6\pm 1.1\pm 0.1\end{array}$				

Parity-violation & Sensitivity to polarization

- Parity-violation observable from asymmetries in polarized processes
- e.g. Mme Wu et al. 1957 experiment with polarized nuclei
- Measured decay asymmetry parameters characterizing two-body decays for each resonant contribution
- Some are nonzero, indicating parity-violation in their decay
- Large sensitivity to the Λ_c^+ polarization of the $\Lambda_c^+ \to \rho K^- \pi^+$ decay observed
- Measured by $\sqrt{3}S$ quantity ranging between zero and one (details in arXiv:2208.03262)

$$\sqrt{3} \textit{S} = 0.662 \pm 0.005 \pm 0.010 \pm 0.007$$

- Considering the large BF, $\Lambda_c^+ \to p K^- \pi^+$ is the best channel to access Λ_c^+ polarization
- $\Lambda_c^+ \to \rho K^- \pi^+$ amplitude model provides best polarization analyser

Charm AmAn & P

$\Xi_c^+ ightarrow ho K^- \pi^+$ SL candidates selection

- $\Xi_c^+ \to p K^- \pi^+$ decay is suppressed both in production and decay w.r.t. $\Lambda_c^+ \to p K^- \pi^+$
- Same strategy with more refined data analysis
- Multivariate (Boosted Decision Tree) selection based on PID, topological, momentum, track information
- \approx 150k signal candidates from Run 2 samples
- One order of magnitude larger background contamination than Λ_c^+ case
- Physical contributions from three-body charm meson decays and ghost background studied and removed

$\Xi_{c}^{+} \rightarrow \rho K^{-} \pi^{+}$ SL amplitude analysis

- Same amplitude fit strategy of $\Lambda_c^+ \rightarrow \rho K^- \pi^+$ analysis
- Obtained preliminary amplitude fit on Run 2 data, polarization in approx B system
- Employed amplitude model with large number of resonances and fit parameters, to be refined
- Good description of phase space distributions: efficiency and background under control
- Amplitude fit to be done also for lab system polarization

Charm AmAn & P

$\Xi_c^+ ightarrow ho K^- \pi^+$ prompt selection

- Multivariate selection based on PID, topological, momentum, track information
- Contributions from three-body charm meson decays removed
- Prompt events separated from decays displaced from the *pp* collision vertex using impact parameter information
- \approx 1.5M $\Xi_c^+ \rightarrow p K^- \pi^+$ candidates from 2016-18 samples
- Combinatorial background and non-prompt contaminations limited to 5% level

$\Xi_c^+ \rightarrow \rho K^- \pi^+$ prompt polarization

- Polarization system defined by production plane, with P_z in orthogonal direction
- Polarization within the plane forbidden by parity conservation
- Polarization measured in bins of p_T and $x_F = p_z/p_{beam}$, separately for Ξ_c^+ and $\overline{\Xi}_c^-$
- Bin-specific background and efficiency considered
- All three polarization components determined in the fit
- *P_x*, *P_y* should be compatible with zero, important cross-check of the measurement

$\varXi_c^+ ightarrow ho K^- \pi^+$ prompt polarization

- Polarization measured using preliminary amplitude model from SL analysis
- Preliminary results after systematic uncertainty evaluation obtained
- No evidence of polarization orthogonal to the production plane
- Small tensions of polarization components in prod plane w.r.t. zero, ~ 2σ, possibly due to systematic effects
- Under investigation, but measured P_z component seems largely unaffected by deviations in P_x , P_y

26/09/2022

Conclusions

- $\Lambda_c^+ \rightarrow \rho K^- \pi^+$ SL amplitude analysis completed, <u>arXiv:2208.03262</u>, submitted to PRD
- Amplitude model ready for Λ_c^+ polarization measurements, *e.g.* in p-Gas SMOG collisions (Andrea's talk) and EMDMs measurements from spin precession
- Provides best polarimeter for the most abundant Λ_c^+ baryon
- First Λ_c^+ polarization measurement from beauty SL decays

Conclusions

- $\varXi_c^+ \to \rho K^- \pi^+$ SL amplitude analysis ongoing
- Preliminary amplitude model obtained, with good control of efficiency and background
- Will provide efficient polarimeter also for the \varXi_c^+ baryon
- Comparison of polarization values for charm baryons with/out strangeness
- $\Xi_c^+ \to \rho K^- \pi^+$ prompt polarization measurement ongoing
- Preliminary results for Ξ_c^+ polarization in $p_{\rm T}$, x_F bins obtained
- No evidence of \varXi_c^+ polarization at 13 TeV center-of-mass
- Not directly relevant for EMDMs measurement, but nice application of the method