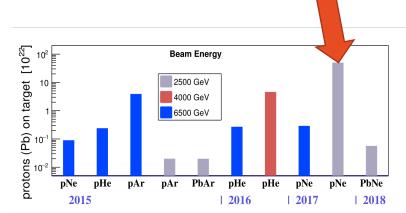


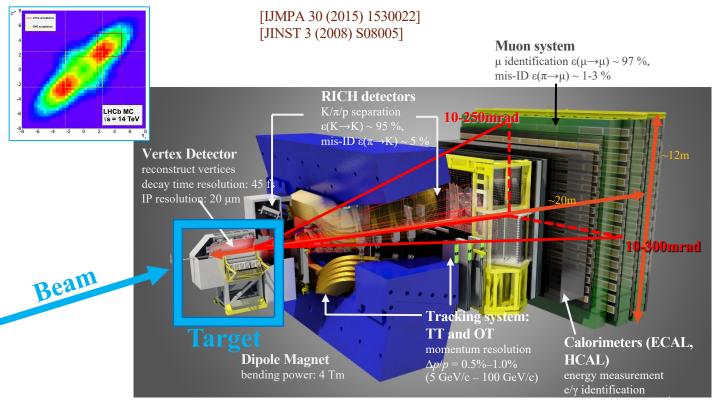
Laboratoire de Physique des 2 Infinis

Measurement of charm baryons cross-section and production asymmetry in fixed-target collisions at LHCb

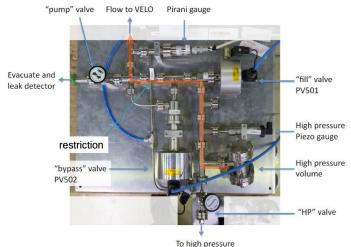

<u>Elisabeth Maria Niel</u>⁽¹⁾ Patrick Robbe⁽²⁾, Achille Stocchi⁽²⁾

Gabriel Ricart⁽⁶⁾, Alberto Baldisseri⁽⁶⁾, Michael Winn⁽⁶⁾, Andrea Merli⁽³⁾⁽⁴⁾, Daniele Marangotto⁽³⁾⁽⁴⁾, Nicola Neri⁽³⁾⁽⁴⁾

Emilie Maurice⁽⁵⁾, Oscar Boente Garcia⁽⁵⁾, Frédéric Fleuret⁽⁵⁾, Kara Mattioli⁽⁵⁾, Chenxi Gu⁽⁵⁾


(1) EPFL, Lausanne
 (2) IJCLab - Laboratoire de Physique des 2 Infinis Irène Joliot Curie
 (3) Università degli studi di Milano
 (4) INFN - Insituto Nazionale di Fisica Nucleare, Sezione di Milano
 (5) DPhN/CEA, LLR
 (6) LLR

The LHCb detector


$b\overline{b}$ acceptance

Single arm forward spectrometer with excellent vertexing, tracking, PID (acceptance $2 < \eta < 5$)

Excellent performances

- \succ It is a "charm factory": for *pp* collisions,
 - $4 \times 10^{32} \ cm^{-2}s^{-1}$ luminostiy for Run 2: the rate of $c\bar{c}$ pairs is 0.96 MHz
 - rate of Λ_c^+ seen by the LHCb detector ~602 Hz
- Unique system to inject gas (SMOG) originally designed for luminosity measurements.
 Re-used to transform LHCb in a fixed-target experiment. [JINST 9 (2014) P12005]
- Injection valve:

Neon bottle

SMOG

arXiv:1612.05741

 10^{-3}

 $10 \,\mathrm{GeV}^2)$

 $R_g^{\rm Pb}(x,Q^2$

1.6

1.4 1.2

1.0

0.8

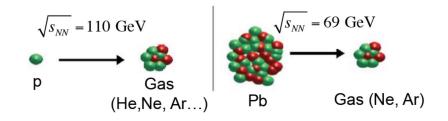
0.6

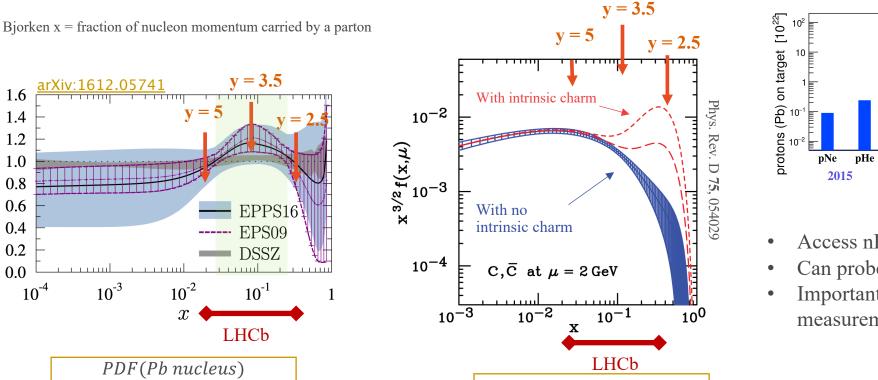
0.4

0.2

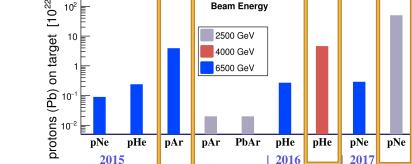
0.0

 10^{-4}


SMOG: System for Measuring Overlap with Gas ۲


v = 5

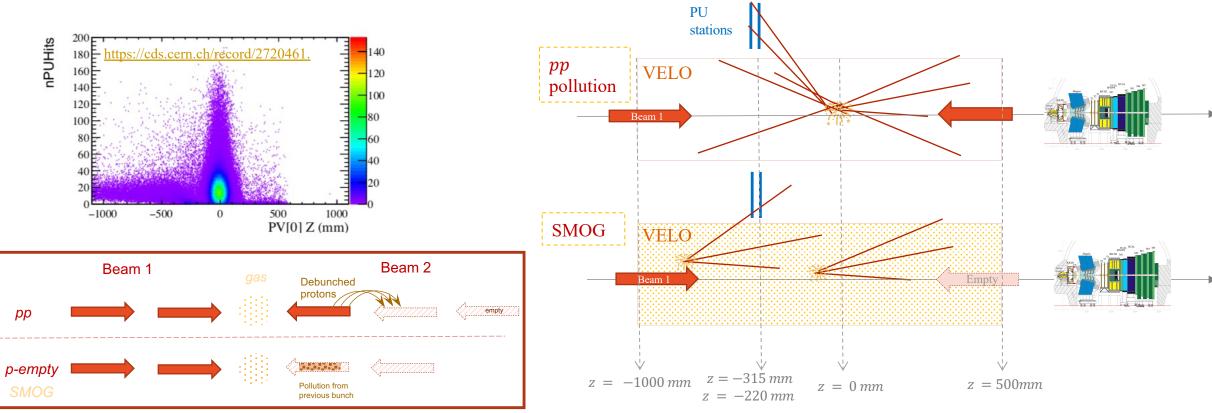
 10^{-2}


PDF(*single nucleon*)

- A noble gas (He, Ne, Ar) at $\sim 2 \times 10^{-7}$ mbar pressure ٠ injected into the LHC vacuum around the LHCb interaction region
- Energy between SPS and RHIC, $\sqrt{S_{NN}} \in [68.5, 110.4]$ GeV ٠
- Rapidity: $-2.5 < y^* < 0.5$ (boost from 4.29 to 4.77) \rightarrow backward and midrapidity range

Charm distributions

- Access nPDF anti-shadowing region
- Can probe intrinsic charm content of nucleon
- Important input for astrophysics measurements

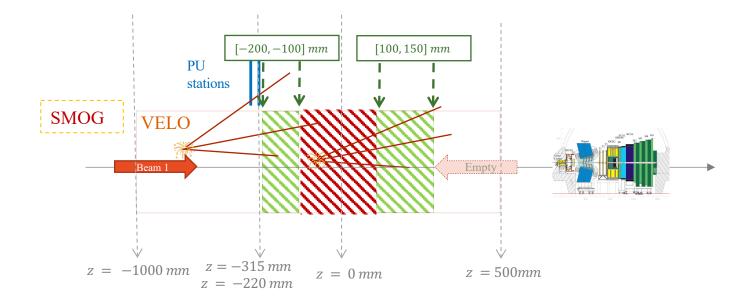

PbNe

2018

SMOG pollution

- Data are taken simultaneously with pp collisions at 5 TeV, no special runs pollution from pp collisions « ghost charges ».
 - ✤ pp and p-Gas data are taken at the same time alternating full and empty bunches.
 - Some debunched protons from the previous beam go to the following bunch which is supposed to be empty.

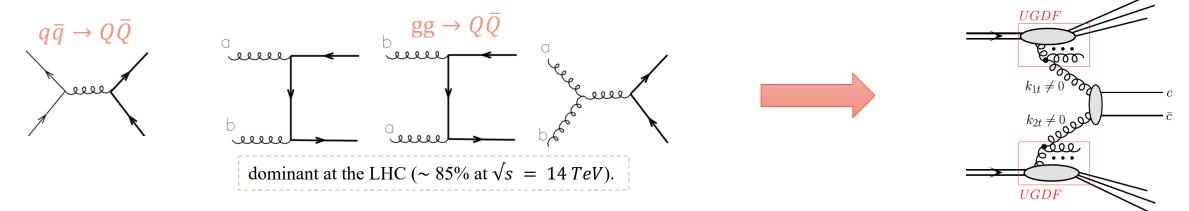
Cleaning using the event topology: Z-coordinate and number of hits pile-up stations


SMOG pollution

- Data are taken simultaneously with pp collisions at 5 TeV, no special runs pollution from pp collisions « ghost charges ».
 - ✤ pp and p-Gas data are taken at the same time alternating full and empty bunches.
 - Some debunched protons from the previous beam go to the following bunch which is supposed to be empty.

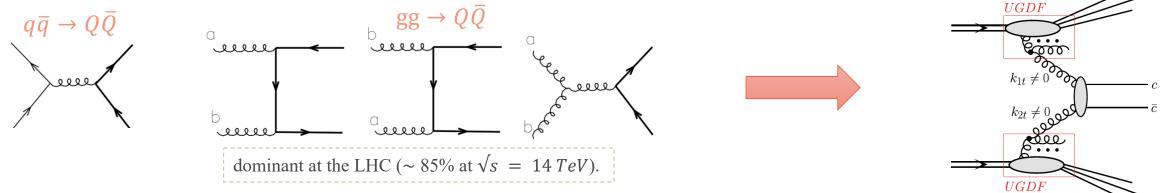
Cleaning using the event topology: Z-coordinate and number of hits pile-up stations

		uuuun	
	$-200 < Z_{PV} < -100$	$-100 < Z_{PV} < +100$	$+100 < Z_{PV} < +200$
nPUHits=0 - GC	$(0.64 \pm 0.31)\%$	$(8.93 \pm 3.27)\%$	$(0.57 \pm 0.34)\%$
nPUHits=0 - SL	$(24.32 \pm 1.16)\%$	$(31.26 \pm 0.88)\%$	$(21.35 \pm 1.28)\%$
Correction factor	1.235 ± 0.012	1.195 ± 0.044	1.207 ± 0.013
nPUHits<3 - GC	$(2.25 \pm 0.47)\%$	$(29.44 \pm 4.77)\%$	$(1.84 \pm 0.56)\%$
n PUHits<3 - SL	$(14.86 \pm 0.91)\%$	$(24.32 \pm 0.77)\%$	$(14.23 \pm 1.04)\%$
correction factor	1.123 ± 0.010	0.877 ± 0.060	1.121 ± 0.012
nPUHits<5 - GC	$(4.69 \pm 0.62)\%$	$(49.08 \pm 5.35)\%$	$(3.76 \pm 0.78)\%$
n PUHits<5 - SL	$(11.91 \pm 0.81)\%$	$(21.79 \pm 0.73)\%$	$(12.17\pm 0.96)\%$
correction factor	1.067 ± 0.010	0.620 ± 0.065	1.080 ± 0.013


Table 7: GC: Fraction of Ghost-Charge residual contamination after nPUHits cut; SL: fraction of fixed-target Signal Loss after nPUHits cut. Correction factor is given by $(1 - GC) \times (1 + SL)$

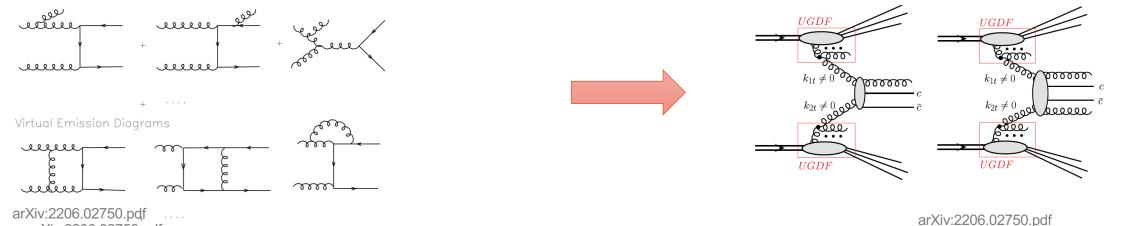
Cross section

How does QCD describe the charm production? \rightarrow perturbative calculations (see Quan Rojo's talk)

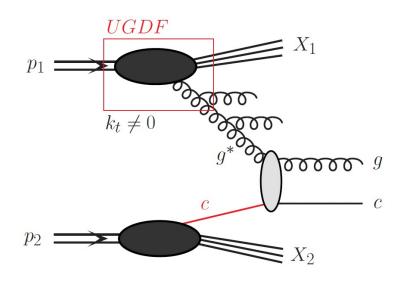

Two processes are responsible for heavy-quark hadro-production at the LO in perturbation theory:

Cross section

How does QCD describe the charm production? \rightarrow perturbative calculations (see Quan Rojo's talk)

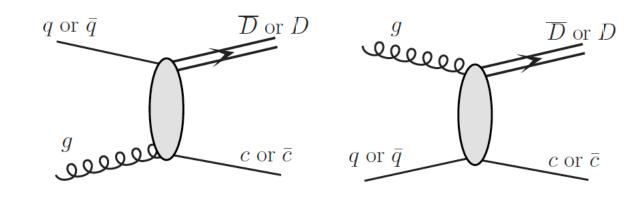

Two processes are responsible for heavy-quark hadro-production at the LO in perturbation theory:

Next-to-leading-order (NLO) corrections come from two sources of $O(\alpha_S^3)$ diagrams:


Real Emission Diagrams

arXiv:2206.02750.pdf

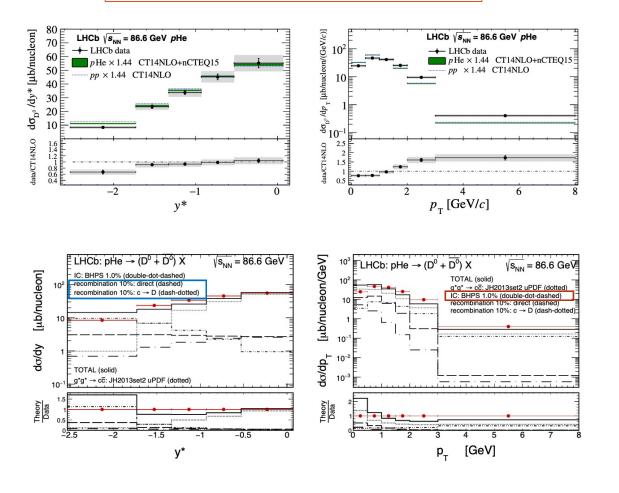
Other contributions to charm production


Intrinsic charm

$gc \rightarrow gc$

- ▶ LHCb fixed-target, backward rapidity→asymmetric configuration ($x_1 \ll x_2$)
- allows to probe both gluon and intrinsic charm PDF at different long. momentum fractions (gluon intermediate, charm large)

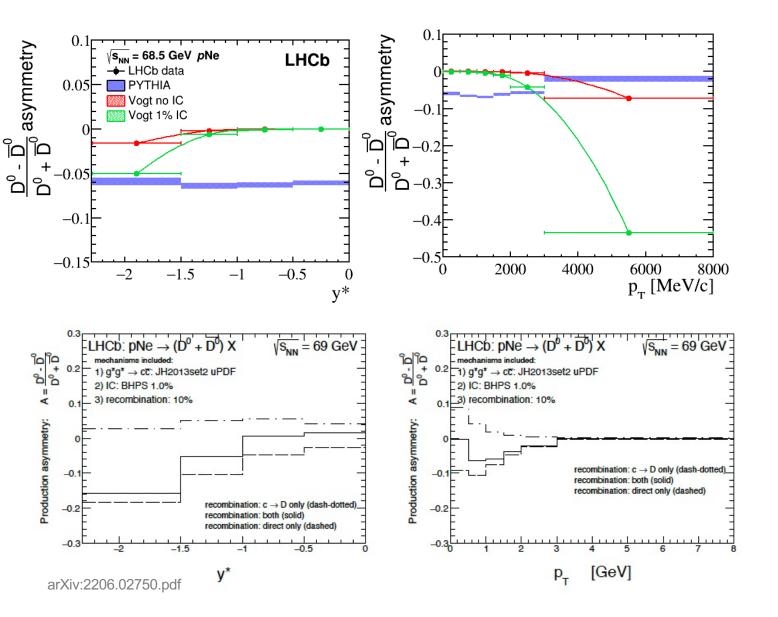
Recombination


 $gq \rightarrow Dc$

 Either direct production or from fragmentation of the c quark (which smaller rapidities)

Comparison to LHCb data

Cross-section relevant to investigate the nucleon content, especially regarding the intrinsic charm component.


*p*He results *PRL 122, 132002 (2019)*

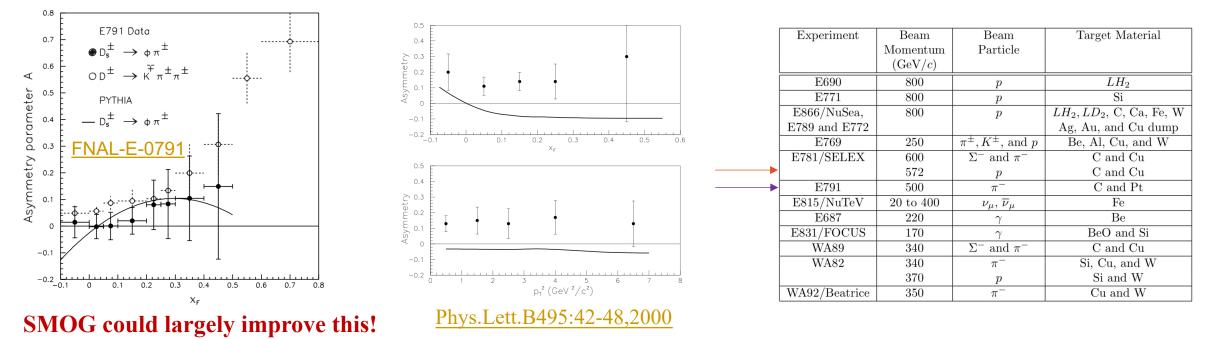
*p*Ne results *LHCb-PAPER-2022-015*

Production asymmetry D^0 : predictions

$$\mathcal{A}_X = \frac{N(X) - N(\bar{X})}{N(X) + N(\bar{X})}$$

- > Pythia : flat prediction
- With 1 % of IC, expected negative asymmetry at backward rapidity and high p_T
- Recombination model: same behaviour as a function of rapidity but opposite for p_T

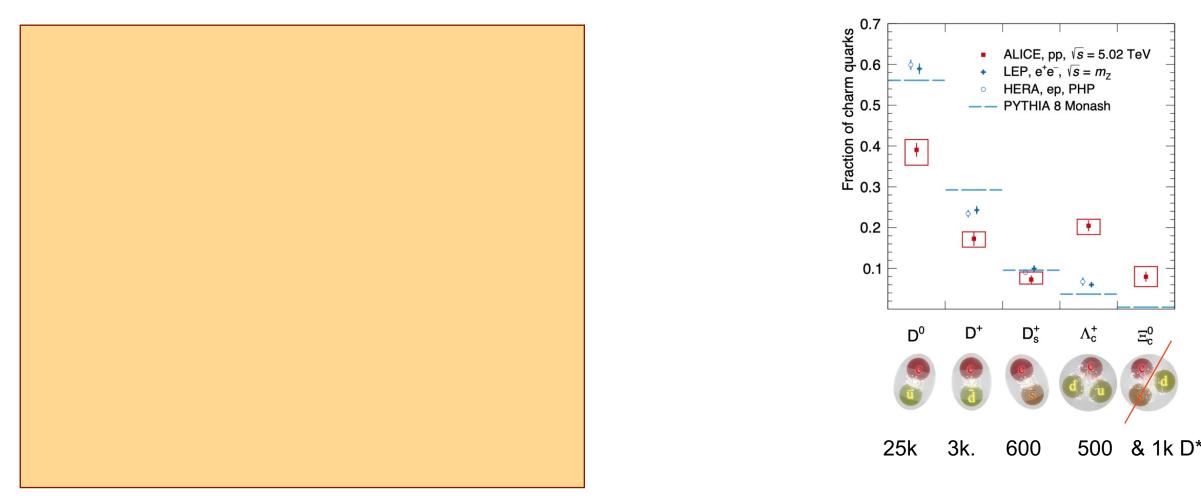
Production asymmetry D^0 : data


$$\mathcal{A}_X = \frac{N(X) - N(\bar{X})}{N(X) + N(\bar{X})}$$

- > Pythia : flat prediction
- With 1 % of IC, expected negative asymmetry at backward rapidity and high p_T
- Recombination model: same behaviour as a function of rapidity but opposite for p_T
- Compare to LHCb data

Paper: *LHCb-PAPER-2022-015*

What about charmed baryons?


- Questions we would like to answer after seeing a sizebale asymmetry for charm mesons:
 - 1. How is the c/\bar{c} hadronization asymmetry changing for Λ_c^+ (udc): same trend? Inverted trend?
 - 2. At y^* (very) negative, do we produce more Λ_c^+ ?
 - 3. Compare the different charm asymmetries in SMOG
 - 4. First measurement of baryon cross-section
- There is one (non conclusive) measurement from FermiLab (E791) for Λ_c^+ asymmetry, compatible with no asymmetry or with increasing at $x_F = 0$.
- Existing measurement from **SELEX**, with different beams

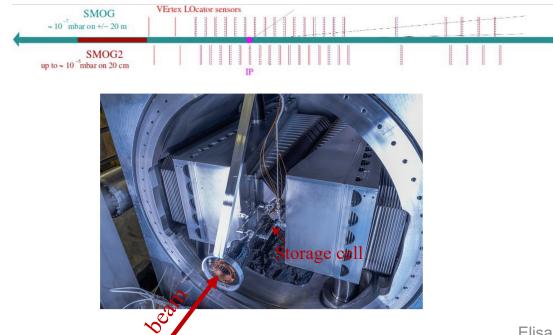
What about charmed baryons?

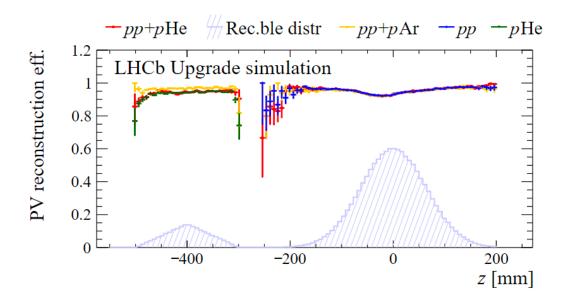
In the target valence region :

Phys. Rev. D 105, L011103 (2022)

Transverse-momentum integrated production cross sections of charm meson/baryon normalised the D^0 (pp collisions 5.02 TeV)

Ratios baryons/mesons


- Also interesting to study ratios of: Lc/D0, Lc/D+, Lc/Ds
- Heavy-flavour can be used to test pQCD, common part for baryons and mesons (production) -> cancels in the ratio
- ➢ Ratios allows to study heavy quark coalescence
 - if Colaescence happens, the $p_T^{\Lambda_c^+} \gg p_T^{D^0}$:
 - \rightarrow ratio should depend on rapidity
 - \rightarrow enhanced Λ_c^+ production (w.r.t. heavy quark fragmentation)
- > ALICE measured that, LHCb measured smaller value, is there a multiplicity dependence?
- > For SMOG: Different energy, multiplicity, we have more/less coalescence?


 $\mathbf{R}(\Lambda_c^+/D^0) = \frac{\Lambda_c^+}{D^0}$

SMOG2

- Upgraded SMOG system with storage cell placed upstream nominal IP at z [-500,-300] mm, with dedicated Gas Feed System.
- > Gas density increased of 2 orders of magnitude \rightarrow higher luminosity
- Sas target possible: H_2 , D_2 , He, N_2 , O_2 , Ne, Ar, Kr, Xe
- Separated luminous region from *pp* allowing for simultaneous datataking → more statistics
- ▶ First injections on May 25th (no beam), June 13th and 20th (with beam)

Reaction	DAQ time	Non coll. bunches	Lumi (nb^{-1})	Decays	SMOG yields	Scale factor	SMOG2 proj. yields
pAr			(11.0)	$D^0 \rightarrow K^- \pi^+$	6450		$\frac{1}{400 \ k}$
	18 h	684	~ 2	$D^+ \rightarrow K^- \pi^+ \pi^+$	975	62	$60 \ k$
				$D_s^+ \to K^- K^+ \pi^+$	131		8 k
				$D^{*+} \rightarrow D^0 \pi^+$	2300		$140 \ k$
				$\Lambda_c^+ o p K^- \pi^+$	50		3 k
				$J/\psi ightarrow \mu^+\mu^-$	500		$30 \ k$
				$\psi(2S) \rightarrow \mu^+ \mu^-$	20		1.2 k
pHe	84 h	648	7.6	$J/\psi ightarrow \mu^+\mu^-$	500	19.6	$10 \ k$
				$\psi(2S) \rightarrow \mu^+ \mu^-$	20		$0.4 \ k$

Conclusions

- SMOG data have produced unique results (See Patrick's talk) and more results are to come!
- \succ Future: charm baryons (Λ_c^+ and Ξ_c^+) polarization, production cross-section and asymmetry
- > Charm baryons measurement are an important input to understand charm production asymmetries seen in charm mesons production
- > This is probably one of the last measurement with SMOG
- SMOG2 successfully installed, more open and hidden charm measurement to come!

