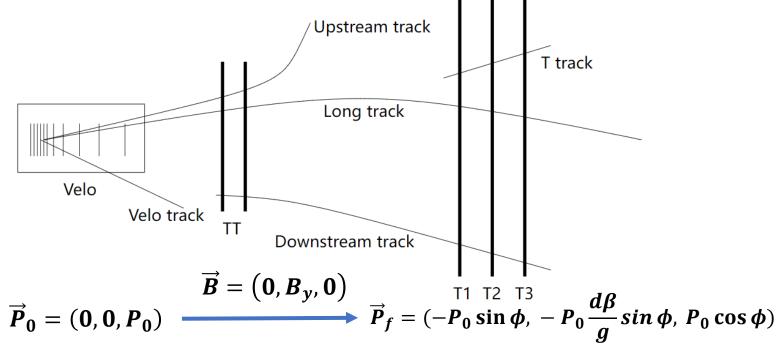
Polarization measurements of Λ baryons in LHCb

Ziyi Wang

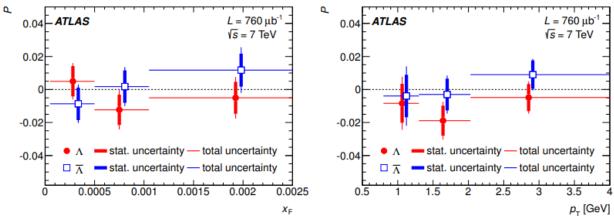
University of Chinese Academy of Sciences (UCAS)

(On behalf of Working Groups)



Motivation

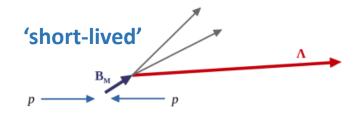
- $ightharpoonup \Lambda$ baryon EMD/MDM measurement through spin polarization vector precession in the magnetic field
- ightharpoonup Require first polarization measurement of Λ before precession

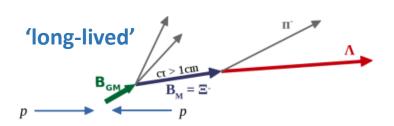

➤ A particular case in the laboratory frame:

ightharpoonup Higher $\overrightarrow{P}_0 \rightarrow$ higher sensibility on dipole moments

Initial Λ polarization in LHCb

- $\triangleright \Lambda$ directly produced from pp collisions via strong interactions:
 - 🗸 Initial polarization is perpendicular to production plane, $\overrightarrow{p}_{
 m beam} imes \overrightarrow{p}_{\Lambda}$
 - ✓ Polarization increase with $P_T(\Lambda)$
 - ✓ Not easy to reconstruct
 - ✓ Prompt \(\Lambda \) is not polarized at LHC [*]




- Λ produced from heavy baryon weak decays:
 - ✓ Large longitudinal polarization: $\sim -90\%$ in $\Lambda_c^+ \to \Lambda \pi^+$
 - \checkmark Polarization measured via analysis angular distribution of $\Lambda o p\pi^-$ decay

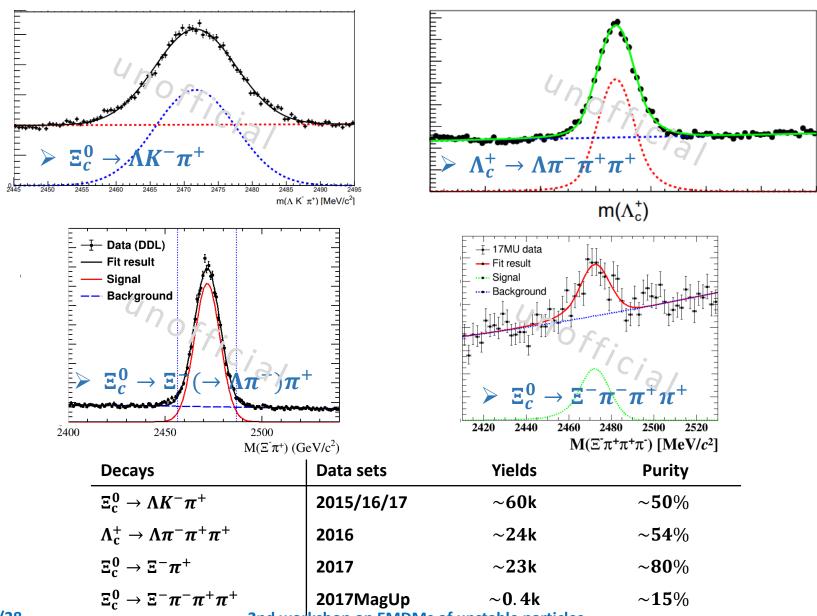
Source and production of Λ (c-baryon decays)

Table 1: Dominant Λ production mechanisms from heavy baryon decays and estimated yields produced per fb⁻¹ at $\sqrt{s} = 13$ TeV, shown separately for SL and LL topologies. The Λ baryons from Ξ^- decays, produced promptly in the pp collisions, are given in terms of the unmeasured production cross section. [*]

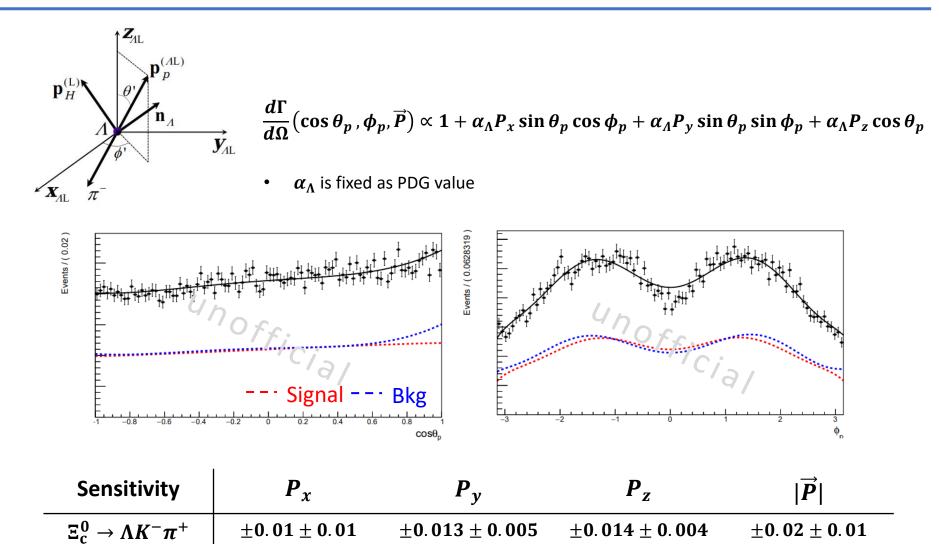
SL events	$N_A/{ m fb^{-1}}(\times 10^{10})$	LL events, $\mathcal{Z}^- \to \Lambda \pi^-$	$N_A/{ m fb}^{-1}~(imes 10^{10})$
$\Xi_c^0 \to \Lambda K^- \pi^+ $ $\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$	7.7 3.3	$\Xi_c^0 \to \Xi^- \pi^+ \pi^+ \pi^-$ $\Xi_c^0 \to \Xi^- \pi^+$	23.6 7.1
$\Xi_c^+ \to \Lambda K^- \pi^+ \pi^+$	2.0	$\Xi_c^+ \to \Xi^- \pi^+ \pi^+$	6.1
$\Lambda_c^+ \to \Lambda \pi^+$	1.3	$\Lambda_c^+ \to \Xi^- K^+ \pi^+$	0.6
$\Xi_c^0 \to \Lambda K^+ K^- \text{ (no } \phi)$ $\Xi_c^0 \to \Lambda \phi (K^+ K^-)$	$0.2 \\ 0.1$	$\Xi_c^0 \to \Xi^- K^+$ Prompt Ξ^-	0.2 $0.13 \times \sigma_{pp \to \Xi^{-}} [\mu b]$

Decays are working in progress:

$$\checkmark \ \Xi_c^0 \to \Lambda K^- \pi^+$$


$$\checkmark \Xi_c^0 \to \Xi^-(\to \Lambda \pi^-)\pi^+$$

$$\checkmark \Lambda_c^+ \to \Lambda \pi^- \pi^+ \pi^+$$


$$\checkmark \Xi_c^0 \to \Xi^- \pi^- \pi^+ \pi^+$$

[*] F. J. Botella, L. M. Garcia Martin, D. Marangotto, F. M. Vidal, A. Merli, N. Neri, A. Oyanguren and J. R. Vidal, Eur. Phys. J. C77, 181 (2017)

Available candidates after selection

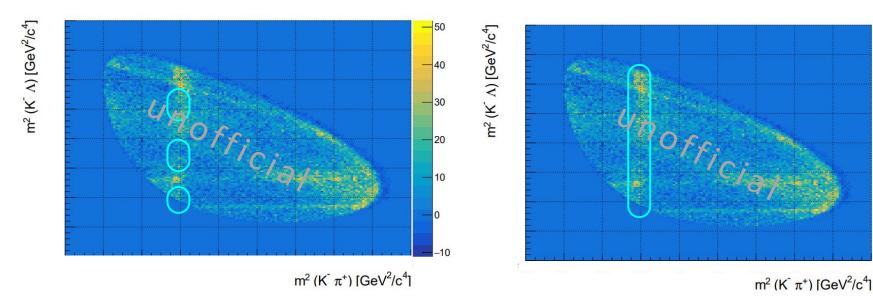
Λ baryon polarization in $\Xi_c^0 o \Lambda K^-\pi^+$ decay

Good sensitivity on polarization but it may not be as large as other week decays.

Λ baryon polarization dilution

> Interference of polarization of different decay chains

➤ Polarization suppressed in strong decays [*].

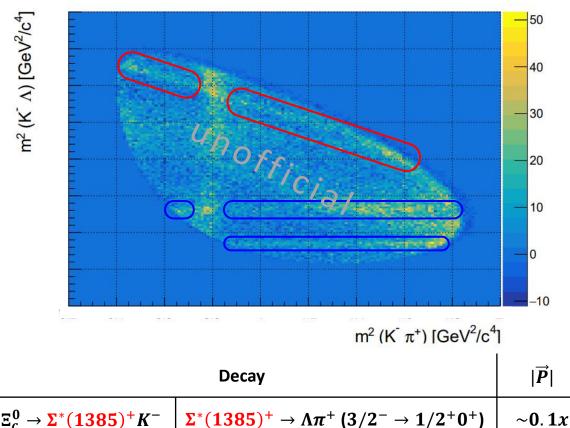

$$P_{\Lambda} = C \cdot P_{M}, C < 1$$

 P_M : polarization of the mother particle

Dec	C	
parity-conserving:	$1/2^+ \rightarrow 1/2^+ 0^-$	-1/3
parity-conserving:	$1/2^- \rightarrow 1/2^+ 0^-$	1
parity-conserving:	$3/2^+ \rightarrow 1/2^+ 0^-$	1/3
parity-conserving:	$3/2^- \rightarrow 1/2^+ 0^-$	-1/5

Λ baryon polarization dilution

> Interference of polarization of different decay chains

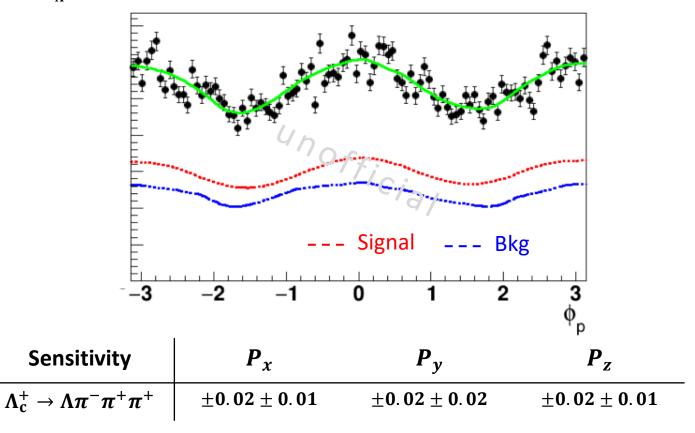

✓ Only 2-body week decay

✓ Interference of different resonances

Decay		$ \overrightarrow{P} $
$\Xi_c^0 \to \Lambda K^* (892)^0$	Only 2-body week decay	\sim 0.4 x
	Interference of different resonances	\sim 0.2 x

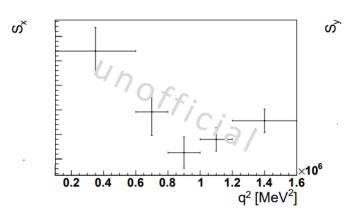
Λ baryon polarization dilution

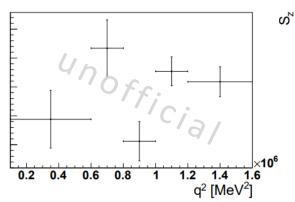
> Polarization suppressed in strong decays

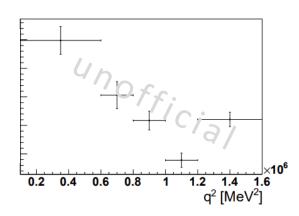

Decay		$ \overrightarrow{P} $
$\Xi_c^0 \to \Sigma^* (1385)^+ K^-$	$\Sigma^*(1385)^+ \to \Lambda \pi^+ (3/2^- \to 1/2^+0^+)$	\sim 0 . 1 x
$\Xi_c^0 o \Xi^* \pi^+$	$\Xi^*(1690)^- \to \Lambda K^- (1/2^- \to 1/2^+0^+)$	\sim 0 . 2x
	$\boxed{\Xi^*(1820)^- \to \Lambda K^- (3/2^+ \to 1/2^+0^+)}$	\sim 0 . 0 x

Λ baryon polarization in $\Lambda_c^+ o \Lambda \pi^- \pi^+ \pi^+$ decay

 \succ Angular distribution of $\Lambda \to p\pi^-$


$$H(\cos\theta_p,\phi_p) \propto 1 + \alpha_{\Lambda}[(s_x\cos\phi_p + s_y\sin\phi_p)\sin\theta_p + s_z\cos\theta_p]$$

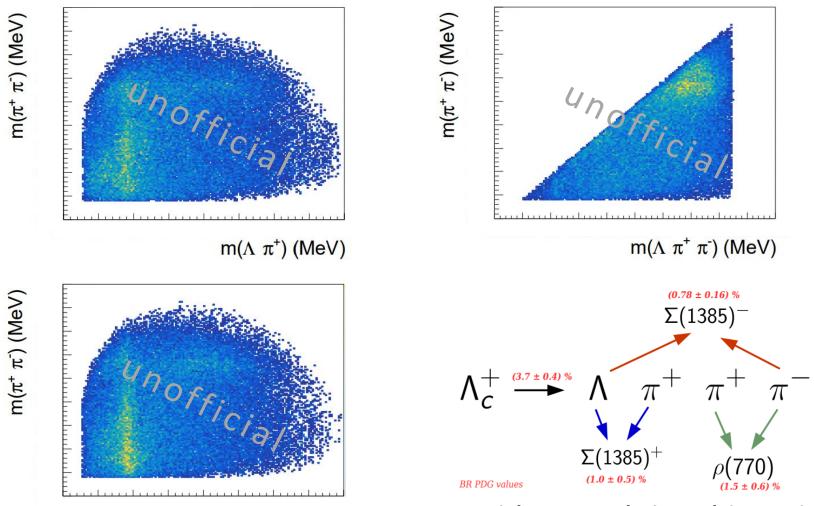

• α_{Λ} is fixed as PDG value



• Based on 2016 data set and only $\Lambda_{
m DD}$ sample

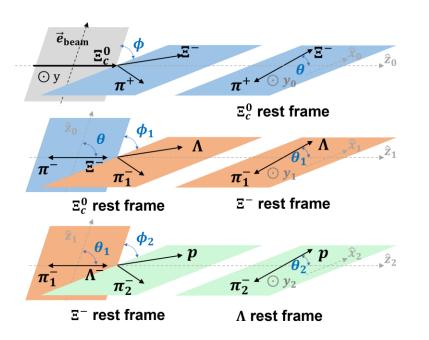
Λ baryon polarization in $\Lambda_c^+ o \Lambda \pi^- \pi^+ \pi^+$ decay

$$q^2 = \left(p_{\Lambda_c^+} - p_{\Lambda}\right)^2$$


• Strong dependence on q^2 as suggested by leading order diagram

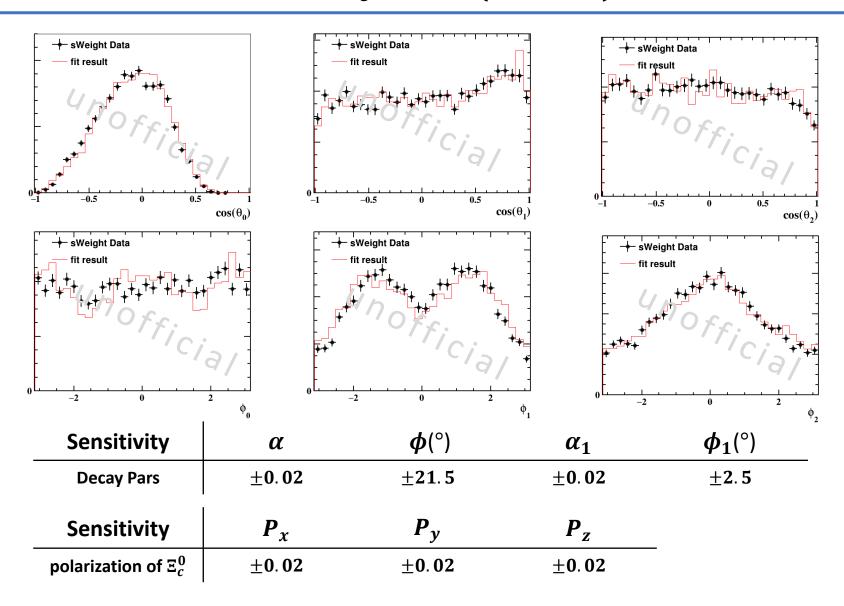
Further studies to investigate the link between polarization and q^2

Resonant structures in $\Lambda_c^+ o \Lambda \pi^- \pi^+ \pi^+$


 $m(\Lambda \pi) (MeV)$

A partial-wave-analysis work is ongoing

Λ baryon polarization in $\Xi_c^0 o \Xi^-(o \Lambda \pi^-) \ \pi^+$ decays


Definition with helicity amplitudes and helicity coordinate system.

Helicity angle	Helicity amplitudes	Lee-Yang Parameters
(θ,ϕ)	$\mathcal{H}_m, \mathcal{H}_{m'}$	α, β, γ
(θ_1,ϕ_1)	h_{λ_1} , $h_{\lambda_1'}$	$\alpha_1, \beta_1, \gamma_1$
(θ_2,ϕ_2)	$f_{\lambda_2}, f_{\lambda'_2}$	$\alpha_2, \beta_2, \gamma_2$

- > The parameters can be extracted from angular formula:
 - (P_x, P_y, P_z) : the polarization of Ξ_c^0 < As the first step >
 - (α, β, γ) : asymmetry parameters of Ξ_c^0
 - $(\alpha_1, \beta_1, \gamma_1)$: asymmetry parameters of $\Xi^-(\Omega^-)$
- \triangleright With the full angular formula \longrightarrow Λ polarization

Angular distribution of $\Xi_c^0 o \Xi^-(o \Lambda \pi^-) \ \pi^+$

• Based on 2017 data set and only $\Lambda_{
m DD}\pi_{
m L}$ sample

Summary

- \succ A precise measurement of Λ baryon polarization in charm baryon decay is promising.
- $\triangleright \Lambda$ from charm baryons can get a large polarization.
- \triangleright Many measurements on the way for $H_c \rightarrow \Lambda X$:

$$\begin{array}{c} \checkmark \ \Xi_{c}^{0} \to \Lambda K^{-}\pi^{+} \\ \\ \checkmark \ \Lambda_{c}^{+} \to \Lambda \pi^{-}\pi^{+}\pi^{+} \\ \\ \checkmark \ \Xi_{c}^{0} \to \Xi^{-}(\to \Lambda \pi^{-})\pi^{+} \\ \end{array} \begin{array}{c} \cdot \ \text{ 'short-lived'} \\ \cdot \ \text{Many possible intermediate states} \\ \\ \cdot \ \text{'long-lived'} \\ \cdot \ \text{Higher purity} \end{array}$$

 \Longrightarrow CP Violation through Λ polarization, decay parameters,

• • •

Backup