

2nd Workshop on electromagnetic dipole moments of unstable particles

> 25-28 September 2022 Gargnano del Garda, Italy

Trigger strategy for long lived particles

C. Agapopoulou (LPNHE), L. Calefice, V. Gligorov, A. Hennequin, L. Henry, B. Kishor Jashal, A. Oyanguren Campos, L. Pica, V. Svintozelskyi, J. Zhuo

The LHCb Run1/2 trigger

L0 hardware trigger

- Calorimeter clusters and/or muon signals
- Reduced rate down to 1 MHz
- Made software trigger job easier but...
- Low efficiency for low-momentum signatures + saturation for fully hadronic channels!

The LHCb Run1/2 trigger

LLPs reach at LHCb

LLPs reach at LHCb

C. Agapopoulou

The potential of the new Run 3 trigger

1 Tb/s

....

....

....

17 storage servers

- Reduce rate by x30 to be able to write out at 1 MHz
- For start of Run 3, 1 GPU / server →2 remaining free slots per server, system can be upscaled in the future

C. Agapopoulou

Trigger strategy for lor

....

LLP triggers in HLT2

- HLT2 triggers rely on offline-quality reconstructed objects
 - T-track reconstruction from L. Henry, I. Sanderswood & M. Wang \bullet
 - LLP vertexing from G. Tonani ullet
- Selections takes up 30% of total HLT2 throughput but
 - O(1000) lines envisioned, what's a few more?

C. Agapopoulou

So what about HLT1?

Original HLT1 algorithm sequence

Reconstruction and selections heavily based on tracking... but only long tracks!

C. Agapopoulou

Seeding & matching at HLT1

Alternative long track reconstruction based on SciFi seeding - can enable Downstream reconstruction and T-track selections at the first trigger level!

C. Agapopoulou

Seeding and matching algorithms

HLT1 Seeding:

- Adapted from HLT2 T-Track reconstruction
- Simplified version to increase speed (optimised for p > 3 GeV/c, tighter hit requirements)
- GPU-adapted: parallelisation across all hits, fewer cases, different UV-hit treatment
- Seeds with $dp/p \sim 10 30\%$

(Velo-SciFi) Matching:

- Input track seeds extrapolated to matching position as straight lines
- Parametrisation of magnetic field to calculate optimal matching position
- Matching to VELO brings *dp/p* down to 1-2%
- Can be adapted to UT-SciFi matching for downstream track reconstruction

HLT1 seeding&matching performance

Efficiency	Seeding	Velo-SciFi matching	Forward (with UT)
Ghost rate	10 %	9 %	5 %
Long, p > 3 GeV	85 %	78 %	55 %
Long, p > 5 GeV	86 %	82 %	63 %
Long from B & p > 3 GeV	89 %	85 %	76 % B
Long from B & P > 5 GeV	90 %	87 %	81 %
No VELO, UT+SciFi, p > 3 GeV	83 %	/	/
No VELO, UT+SciFi, p > 5 GeV	86 %	/	/
Long from B, electrons, P > 5 GeV	79 %	76 %	73 % B^0 –

Ghost rate in HLT1

- Ghost rate ~ 10 % for seeding, reduces to 8% for long tracks
- Single-track lines are very sensitive to ghosts
- Long/Downstream tracks can profit from UT information to reduce the ghost rate (confirmed with the forward algorithm and simulation)
- However, T-tracks will require particular care
- Algorithm parameter scan:
 - Already performed for long tracks
 - Ghost rate & equivalent tracking trigger rates brought down by 10% with less than 1% loss in efficiency
 - Exercise to be performed on seeding algorithm
 - Exploring more advanced fake rejection techniques (MVA) - dedicated treatment required for the GPU architecture

Total ghost rate

C. Agapopoulou

Considerations for HLT1 LLP algorithms

Throughput

Reminder: HLT1 must run at 30 MHz

- With the currently installed ~200 GPUs, this translates to min 150 kHz / GPU
- With only 20% margin, impact of any additional algorithms must be minimal... but

Reminder, we expect to double n. GPUs, this should allow for many more functionalities

Output rate limitations

- Output rate limited to 1 MHz (~ 1 Tb/s)
- Limitation from the writing speed to the HLT1-HLT2 buffer (online alignment & calibration)
- Current HLT1 rates way above limit → rescaling campaign planned when all lines are in place
- Largest fraction taken up by two-track / low p_T lines
- Seeding & matching access lower p_T tracks \rightarrow higher rates
- Special care on rate must be taken for any new lines!

	HLT1-Matching (kHz)	HLT1-Forward (kHz)	
TwoTrackMVACharm	5340	4689	
TwoTrackMVA	858	744	
SingleTrackMVA	708	432	
KsToPiPi	1071	645	
HIt1LowPtMuon	2034	2490	
HIt1LowPtDiMuon	1782	408	
Total	11300	7800	

C. Agapopoulou

Adapting to Downstream Tracking

UT seeding:

- Standalone reconstruction of UT segments & matching with SciFi seeds
- Preliminary tests with entire UT give encouraging tracking efficiency, but far from throughput target
- Using only remaining UT hits (unused for long reco) quite promising to speed up algorithm
- Very well adapted for migration to FPGA tracking

Downstream tracking (ala HLT2):

- Propagate SciFi seeds upstream of magnet and look for unused UT hits (hit flagging)
- Algorithm speed dependent on window size → potentially stronger limits on momentum range
- Probably the most realistic solution in terms of performance and throughput for early Run 3

Both options under investigation

C. Agapopoulou

Adapting to ultra-LLPs

Can we trigger directly on the LLP decay after the UT?

+ strategy for different physics channels

C. Agapopoulou

Trigger strategy for long-lived particles

0

0

100

700

Optimized matching parameters. MinBias

300

Number of tracks / event

200

VeloUT*: 130

Truth matches: 41

600

SciFi: 80 VeloSciFi: 45

500

400

Conclusions

- The new software-only trigger is a unique opportunity to increase LHCb's acceptance for Long Lived Particles
- For the second stage trigger (HLT2), offline-quality reconstruction is key:
 - Track and vertex reconstruction algorithms relying on displaced tracks advancing well
- For the first stage trigger (HLT1), the new GPU architecture is opening up reconstruction & trigger possibilities:
 - SciFi seeding recently implemented with compatible performance to the default (Forward tracking) for the first time in HLT1
 - Exploring downstream tracking and triggering on T-tracks
 - Particular care must be given to throughput and output rate limitations

Stay tuned for more updates and thank you for your attention!

Backup

The LHCb U1 upgrade

The LHCb detector at CERN:

- Single-arm forward spectrometer for highprecision flavour physics
- High precision tracking and vertexing
- Complemented with excellent PID

The U1 upgrade

- Instantaneous luminosity will increase by x5
- Major upgrade in all sub-detectors to handle increased rates
- Software-only trigger!

Are GPUs a good fit?

- Event builder farm equipped with 173
 servers
- Each server has 3 free PCIe slots
 - Can be used to host GPUs
 - Sufficient cooling & power
 - Advantageous to have GPUs as selfcontained processors
 - Sending data to GPU is like sending data to network card
- GPUs map well into LHCb DAQ architecture
- HLT1 tasks inherently parallelizable
- Smaller network between EB & CPU HLT
- Cheaper & more scalable than CPU alternative
- ➡ Was chosen as the baseline for the upgrade!

Is implemented with O(200) Nvidia RTX A5000 GPUs

GPU-equipped event builder PC, with traffic of all three readout cards.

Architecture upgrade options

Detector data received by O(500) FPGAs and built into events in the EB servers

Two options:

 Send full 40 Tb/s to a CPU processing server → extra network needed

 Fill extra EB slots with GPUs → reduce rate locally to 1 Tb/s before full processing

Seeding&matching breakdown

Allen: a GPU HLT1 trigger platform

- Public software project: gitlab repo
- Supports three modes:
 - Standalone
 - Compiling within the LHCb framework for data acquisition
 - Compiling within the LHCb framework for simulation and offline studies
- Runs on CPU, Nvidia GPU (CUDA, CUDACLANG), AMD GPUs (HIP)
- GPU code written in CUDA
- Cross-architecture compatibility (HIP, CPU) via macros

Allen

Welcome to Allen, a project providing a full HLT1 realization on GPU.

Documentation can be found here.

Mattermost discussion channels

- Allen developers Channel for any Allen algorithm development discussion.
- Allen core Discussion of Allen core features.
- AllenPR throughput Throughput reports from nightlies and MRs.

Performance monitoring

- Allen throughput evolution over time in grafana
- Allen dashboard with physics performance over time

<form><section-header><section-header><section-header><text><text><text>

25

Run 1/2 limitations

- Run1/2 L0 triggers only on calo clusters and muons + HLT1 triggered only on Long Tracks -> Sub-optimal for LLP channels
- Mitigation possible when part of the decay contained Long Tracks and/or leptons:
 - Ex $\Lambda_b \to \Lambda J/\psi(\,\to\,\mu\mu)$ triggering on the muons
 - Not possible for channels such as $D^0 \to K^0_S K^0_S$ and $\Lambda_b \to \Lambda \gamma$
- $D^0 \rightarrow K^0_S K^0_S$ Run 2 studies by L. Pica, G. Punzi, G. Tuci:
 - Extremely interesting for CPV in charm
 - Run 2 analysis performed in LL, LD and DD
 - Simulation: ~86% of decays with at least one **Downstream** K_S^0 ,
 - but only 25% in data
 - HLT1 only triggers on Long Tracks + HLT2 selections are inefficient for Downstream

A lot of room for improvement on the trigger side!

HLT1 CPU/GPU tracking performance

C. Agapopoulou

Trigger strategy for long-lived particles

HLT1 muonID performance

Excellent muon identification and misID background rejection

28

C. Agapopoulou

Kalman filter

- Improve Impact Parameter (IP) resolution and reduce ghosts
- Nominal LHCb Kalman filter uses Runge Kutta extrapolator + detailed detector description
- In HLT1, for performance reason two alternatives based on parametrizations:
 - Full detector Parametrized Kalman Filter
 - Velo-Only Kalman Filter (fits only Velo segment, momentum estimate from full track)
 - IP resolution mostly impacted by Velo measurement -> Velo-Only option chosen, which significantly improves throughput

HLT1 selection performance

- Inclusive rate for the main HLT1 lines ~ 1 MHz
- Compatible performance between CPU and GPU

