

Add RICH information for T-track reconstruction

2022/09/28

Mengzhen Wang (INFN di Milano) on behalf of T-Track Performance Task Force team

The LHCb detector

• Originally designed for *b*, *c* physics

Single-arm & forward spectrometer

Good tracking/PID/trigger performance for **particles originating around collision point**

JINST 3 (2008) S08005 Int.J.Mod.Phys.A 30 (2015) 07, 1530022

- Now developed as a general-purpose experiment
 - Arising interests on long-lived particles

Example: arXiv 2101.00928

- Λ EDM, MDM; BSM particle searches...
- A good-performance track reco. using downstream trackers becomes crucial

LHCb track categories

Long & Downstream track:

Most widely used for physics analysis

Good spatial & momentum resolution:

Enough hits from 3(2) trackers Pass central region of \vec{B} field

Cherenkov-based PID info for BKG subtraction

• T-track: essential input for long-lifetime particle studies

BSM particles decaying after TT; Λ decaying after magnet (EDM, MDM effect visible)

- Poor track momentum resolution
 - $\frac{\delta p}{p} = (10 \sim 30)\%$ (Long-track @ 1% level)
- No PID information in default LHCb algorithm

How to improve ?

(Menu of today)

By Mengzhen Wang et. al.

RICH information for T-track **momentum** reconstruction

θ_C : Cherenkov angle

Motivation

- Cherenkov-based PID:
 - Velocity measurement: $\beta = \frac{1}{n \cos \theta_c}$ Estimation of mass (PID)
 - Momentum from tracking system

θ_C : Cherenkov angle

Motivation

• Cherenkov-based PID:

• Momentum from tracking system

Exchange the input & output ?

θ_C : Cherenkov angle

Int.J.Mod.Phys.A 30 (2015) 07, 1530022

Motivation

- Cherenkov-based PID:
 - Velocity measurement: $\beta = \frac{1}{n \cos \theta_c}$ Estimation of momentum
 - A pre-assigned mass hypothesis
- Resolution using this approach ?
 - $\delta \theta_c \sim 0.7 \text{ mrad}$ for RICH2

LHCb RICH reconstruction

- Basic idea:
 - Cannot naively obtain the θ_C value associated with each track, only global reconstruction & fits available

LHCb RICH reconstruction

- The default PID assignment procedure
 - Float the PID hypotheses and find out the one resulting in the best global RICH likelihood

What we can do ? (W.I.P.)

 Scan the momentum value for tracks we have interest (T-tracks tagged as LLP decaying products)

 $p = p_{rec}$ for most tracks; $p = p_{rec} \pm i\sigma$ for interesting tracks. Scan N points

Very simplified version, with many differences w.r.t. our target: based on long tracks; make use of both RICH1+2 info; et. al.

A simplified feasibility study

- MC sample: Run3, $\Lambda_c^+ \rightarrow pK\pi^-$, all raw banks persisted (XDIGI)
- For most tracks, use reconstructed values
- 2 setting for Λ_c^+ decay products
- a). Use true \vec{p} ; b). $\vec{p} \times (1 + 0.2G)$, G: standard Gaussian

Some impact on ΔLL variables

• Proton sample:

The true momentum is more likely to result in a larger PIDp variable

 $PIDp \equiv LL_{RICH, global}(p hypo) - LL_{RICH, global}(\pi hypo)$

Some impact on ΔLL variables

• Kaon sample:

Distributions when using settings a) or b) Variation when changing from b to a) 0.25 0.1 0.2 +0.08 0.15 0.06 0.10.04 0.02 0.05 0 n -100-5050 100 0 -100-5050 100 0 PIDK(kaon) Change of PIDK(kaon)

The true momentum is more likely to result in a larger PIDK variable

 $PIDK \equiv LL_{RICH, global}(K hypo) - LL_{RICH, global}(\pi hypo)$

Some impact on ΔLL variables

• Pion sample:

The true momentum is more likely to result in a smaller PIDK variable

 $PIDK \equiv LL_{RICH, global}(K hypo) - LL_{RICH, global}(\pi hypo)$

By Izaac Sanderswood et. al.

Activate **T-track PID** variables

RICH2 is close to T-station

PID on T-tracks

 Most T-tracks can also pass through RICH2 detector

• W.I.P. to enable RICH+Calo+Muon joint PID information for T-track prototype particles

Summary

- Importance of T-tracks is arising for
 - Enable an efficient reconstruction on particles with flying distance ~7 meters
 - Long-lived BSM searches; Λ EDM, MDM measurement
- Efforts are ongoing to improve T-track performance
 - Use RICH2 likelihood information to improve T-track momentum resolution
 - A simplified feasibility study performed
 - Variation of p hypothesis do impact Rich likelihood
 - Next step: Implement the momentum scan and test the performance

• Activate PID information on T-tracks

- Preliminary draft ready for Run3 operation
- Feasibility of implementing on Run1-2 under study

Stay tuned !

Thank you for your attention ! Any questions or comments ?

Back up

Possibility of using RICH2 info as additional input for improved precision ?

The values of $\sigma(\theta_C)$, extracted from a simple fit to the $\Delta \theta_C$ distributions, are determined to be $1.618 \pm 0.002 \text{ mrad}$ for RICH1 gas (C₄F₁₀) and $0.68 \pm 0.02 \text{ mrad}$ for RICH2 (CF₄),

 $\Delta \theta_{C} \sim 0.7 \text{mrad using RICH2}$?

LHCb-DP-2008-001

where the photon wavelength λ is in nm [104]. For C₄F₁₀, n=1.0014 and for CF₄, n=1.0005 at $\lambda = 400$ nm. The effective radiator lengths are about 95 cm in C₄F₁₀ and 180 cm in CF₄. The

6.1.2 RICH 2

The RICH 2 detector [91, 92] is located between the last tracking station and the first muon station, see figure 2.1. It contains a CF₄ gas radiator, providing PID from approximately $15 \text{ to} \ge 100 \text{ GeV/c}$ for particles within the reduced polar angle acceptance of $\pm 120 \text{ mrad}$ (horizontal) and $\pm 100 \text{ mrad}$

8 GeV pion	10 GeV pion	12 GeV pion	16 GeV pion	20 GeV pion	24 GeV pion
26.4 mrad	28.4 mrad	29.4 mrad	30.4 mrad	30.8 mrad	31.1 mrad

 $\Delta p \sim 20\%, \Delta \theta_C \sim 1 \text{ mrad}$ $\Delta p \sim 20\%, \Delta \theta_C \sim 0.4 \text{ mrad}$

RICH2 info is promising to help improve T-track momentum resolution, at least in some kinematic regions (above RICH threshold but not too high)

Back up • $\cos\theta_C = \frac{1}{n\beta}; \beta = \frac{p}{\sqrt{n^2 + m^2}}$ • $\delta\theta \sin\theta_C = \frac{1}{n\beta^2}\delta\beta; \ \delta\beta = \frac{\delta p}{F} - \frac{p^2\delta p}{F^3} = \frac{m^2}{F^3}\delta p$ • $\delta\theta\sin\theta_C = \frac{1}{n\beta^2}\frac{m^2}{E^3}\delta p$ • $\delta p = \frac{n\beta^2 E^3}{m^2} \sin\theta_C \delta\theta$

No significant variation in Global RICH likelihood value

From Giorgia's talk

https://twiki.cern.ch/twiki/bin/view /LHCb/RICHPicturesAndFigures

