Measurement of MDM/EDM of Λ baryons at LHCb

Sergio Jaimes Elles

Univeristat de València (IFIC-CSIC), Spain *Collaborative effort between groups in Milano, UCAS, CERN and Valencia.

September 28, 2022

Introduction

Electric and Magnetic Dipole Moments of spin-1/2 particles

$$\delta = d\mu_N \frac{\mathbf{s}}{2}, \quad \mu = g\mu_N \frac{\mathbf{s}}{2}.$$

 $\mu_N = e\hbar/(2mc)$ is the particle magneton, d the gyroelectric factor and g the gyromagnetic factor.

$$H = -\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B} \xrightarrow{P,T} H = +\delta \cdot E - \mu \cdot B.$$

► A non-zero value of the EDM violates T and P symmetries → Test of CP violation.

Introduction

- Also implies an upper bound on θ₀ ≤ 10⁻¹⁰.
 → Strong CP problem.
- Measurement of the MDM of particle and anti-particle constitute a test of the CPT theorem.
- First studies on electric dipole moments date from the 50's. - E. M. Purcell and N. F. Ramsey Phys. Rev. 78, 807 - 1950
 - J. H. Smith, E. M. Purcell, and N. F. Ramsey Phys. Rev. 108, 120 1957.
- Experimental efforts have been able to put limits on the EDM of leptons, neutrons, heavy atoms and Λ baryons.
- Limit on the neutron EDM

$$|d_n| < 1.8 \times 10^{-26} \, e \, \mathrm{cm},$$

implies that for the Λ

$$|d_{\Lambda}| \lesssim 10^{-23} \, e \, \mathrm{cm}.$$

[Phys. Rev. Lett. 124 - 2020]

Sergio Jaimes Elles

Measurement of MDM/EDM of Λ baryons at LHCb

Measurement of $\Lambda~{\rm EDM}/{\rm MDM}$

- Fixed target p-Be experiment at Fermilab.
- ▶ Proton beam of 300 GeV.
- \blacktriangleright ~ $3 \times 10^6 \ \Lambda$ events.
- Strong Λ production with $\sim 8\%$ polarization but no $\bar{\Lambda}$ polarization.
- Measurement of the MDM of the Λ baryon.

$$\mu = (0.6138 \pm 0.04)\mu_N.$$

• Upper bound on the EDM of the
$$\Lambda$$

$$|d_{\Lambda}| < 1.6 \times 10^{-16} \, e \, \mathrm{cm}.$$

[PRD 23, 814 (1981) and PRL 41, 1348 (1978)]

Sergio Jaimes Elles

Measurement of MDM/EDM of Λ baryons at LHCb

Measurement of Λ EDM/MDM

Spin-polarization vector ${\bf s}$ of Λ can be analysed through the angular distribution of the decay $\Lambda\to p\pi^-$

$$\frac{dN}{d\Omega'} = 1 + \alpha \mathbf{s} \cdot \mathbf{k}$$

 $\alpha = 0.642 \pm 0.013$ is the decay asymmetry parameter.

Dynamics of the spin in an external magnetic field is given by the T-BMT equation.

For a Λ baryon flying with an initial longitudinal polarization $\mathbf{s}_0=(0,0,s_0)$ on a magnetic field $\mathbf{B}=(0,B_y,0)$

$$\mathbf{s} = \begin{cases} s_x = -s_0 \sin \phi \\ s_y = -s_0 \frac{d\beta}{g} \sin \phi \\ s_z = s_0 \cos \phi \end{cases}$$

where ϕ is the precession angle.

Measurement of Λ EDM/MDM

Interaction of EDMs and MDMs with an external electromagnetic field produces a spin precession.

Three elements are necessary for the measurement of this effect

- Source of polarized particles whose direction and polarization degree are known.
- Intense electromagnetic field able to induce a sizable spin precession angle.
- A detector to measure the final polarization vector by analysing the angular distribution of the particle decays.

Measurement of Λ EDM/MDM at LHCb

- ▶ Weak decays of heavy baryons produce a large number of highly polarized Λ baryons, e.g. $\Lambda_b \rightarrow \Lambda J/\psi$ with $\sim 100\%$ longitudinal polarization.
- Measurement using prompt As produced at LHC is not possible since they are not polarized.[PRD 91, (2015)]

Sergio Jaimes Elles

Measurement of MDM/EDM of Λ baryons at LHCb

Measurement of Λ EDM/MDM at LHCb

Spin precession of Λ baryons at the LHCb magnet

Measurement of Λ EDM/MDM at LHCb

Dependence of d uncertainty with the integrated luminosity for a reconstruction efficiency of 0.2% and 1%.

At $L \sim 50 \text{fb}^{-1} \rightarrow \sigma_d \approx 1.3 \times 10^{-18} e \text{ cm}.$ \rightarrow Improved limit on the MDM of $\approx 10^{-4} \mu_N$. [EPJC 77, 181, 2017]

Sergio Jaimes Elles

Measurement of MDM/EDM of Λ baryons at LHCb

A source of initially polarized Λ is needed to achieve a higher sensitivity. $\Lambda_b \to \Lambda J/\psi$ offers $\sim 100\%$ initial Λ polarization. [JHEP, 2020, 110]

Channels of interest

SL events	$N_A/{ m fb}^{-1}~(imes 10^{10})$	LL events, $\varXi^-\to \Lambda\pi^-$	$N_A/{ m fb}^{-1}~(imes 10^{10})$
$\Xi_c^0 \rightarrow \Lambda K^- \pi^+$	7.7	$\varXi^0_c\to \varXi^-\pi^+\pi^+\pi^-$	23.6
$\Lambda_c^+\to\Lambda\pi^+\pi^+\pi^-$	3.3	$\Xi_c^0 \to \Xi^- \pi^+$	7.1
$\Xi_c^+ \to \Lambda K^- \pi^+ \pi^+$	2.0	$\Xi_c^+ \to \Xi^- \pi^+ \pi^+$	6.1
$\Lambda_c^+ \to \Lambda \pi^+$	1.3	$\Lambda_c^+ \rightarrow \Xi^- K^+ \pi^+$	0.6
$\Xi_c^0 \to \Lambda K^+ K^- \pmod{\phi}$	0.2	$\Xi_c^0 \rightarrow \Xi^- K^+$	0.2
$\Xi_c^0 \to \Lambda \phi(K^+ K^-)$	0.1	Prompt Ξ^-	$0.13 \times \sigma_{pp \to \Xi^-} \ [\mu b]$

Ongoing polarization studies

► $\Xi_c^0 \to \Lambda K^- \pi^+$ ► $\Lambda_c^+ \to \Lambda \pi^- \pi^+ \pi^+$ More on this on Z. Wang talk.

Final Polarization using TTracks

Tracks that leave only hits after the magnet have never been used for physics analysis at LHCb.

- Poor momentum resolution $\rightarrow 20 30\%$, for Long tracks $\sim 0.1\%$.
- Long propagation distances in the magnet region make track extrapolation more difficult.
- Low vertex reconstruction efficiencies and resolution.
- Lack of RICH2 for TTracks in Run 1 - 2 makes background distintion harder. See M. Wang talk.

Feasibility study using $\Lambda_b\to\Lambda J/\psi$ to explore the reconstruction using TTracks.

$\Lambda_b \to \Lambda J/\psi$ using TTracks

Relative efficiencies on the selection process

 $\to \Lambda$ vertex reconstruction presents the lowest efficiency, efforts to improve it are on progress. See G. Tonani talk.

$\Lambda_b \to \Lambda J/\psi$ using TTracks

 ~ 6140 signal events with a core mass resolution of $(7.7\pm0.4)\rm{MeV/c^2}$ and $(41\pm2)\rm{MeV/c^2}$ for the Λ and Λ_b respectively.

Conclusions

- A wide physics program is being proposed for the study of the EDM and MDM of charm and strange baryons, where the LHCb will play a central role at improving the precision on the Λ.
- \blacktriangleright Prospect to improve the current bound on the Λ EDM by two orders of magnitude.
- Study of particles that decay in the magnet region for Run 1-2 is feasible, although there is still room for improvement.
- Work being done on the implementation of Trigger lines for Run 3, on the new fully software-based trigger.
- Possibility to expand the sensitivity to BSM Long-Lived Particles at LHCb.

Backup

Variable	Units	Minimum	Maximum
$p(\pi)$	MeV/c	2000	500000
$p\left(p ight)$	MeV/c	10000	500000
$p_T(p)$	MeV/c	400	_
$m(p\pi)$	MeV/c^2	600	1500
$z_{\rm vtx}^A$	mm	5500	8500
$\cos \xi_p(\Lambda)$		0.9999	_
$\chi^2_{\rm IP}(A)$		_	200
$\chi^2_{\rm dist}(\Lambda)$		_	$2 \cdot 10^{7}$
$\chi^2_{\rm xtr}(A)$		_	750
$ m(\mu^-\mu^+)-m(J/\psi) $	MeV/c^2	_	90
$p_T(\Lambda)$	MeV/c	450	_
$m(J/\psi \Lambda)$	MeV/c^2	4700	8500
$\cos \xi_p \left(A_h^0 \right)$		0.99	_
$\chi^2_{\rm IP} \left(A^0_b \right)$		_	1750
$\chi^2_{ m vtx}(A^0_b)$		-	150

TTracks reconstructibility

