Layout and simulated Performance of a LHC Fixed-Target Test Stand

P. Hermes, D. Mirarchi, K. Dewhurst, S. Redaelli

2nd EDM/MDM Workshop Gargnano, Italy 27.09.2022

Acknowledgments

G. Arduini, R. Bruce, P. Fessia, A. Fomin, O. Aberle, Q. J. Demassieux, M. Ferro-Luzzi, R. Seidenbinder

27.09.2022

Layout and simulated Performance for a LHC Fixed-Target Test Stand | P. Hermes

LHC Collimation System

- LHC stored beam energy up to ~500MJ can cause severe damage!
- Collimation system should safely handle regular and irregular particle loss: >80 massive movable absorbers
- Relies on scattering from primary into retracted secondary collimators
- Some particles form secondary beam halo and escape \rightarrow absorbed later
- Many constraints for high-energy operation (>3x10¹¹ particles per beam)

LHC Collimation System

CERN

LHC double crystal setup

S. Redaelli, PBC Kick-off workshop 2016

W. Scandale, PBC Kick-off workshop 2016

Proof of Principle (PoP) Setup

- **Unprecedented experimental setup** with challenging combination of high precision devices
- Final setup: installation not possible before LS3
- Idea to probe operation and demonstrate concept feasibility in LHC Run 3: proof of principle setup
- Efficiency estimates currently simulation based (uncertainty) \rightarrow PoP allows for confirmation in measurements
- Preparation of PoP, need to:
 - Select LHC region for installation
 - Find suitable positions for new key devices
 - Study efficiency in simulations
 - Many more items (integration, controls etc.) outside the scope of this talk

Introduction

Key devices, positioning and constraints

Performance estimates

Preparatory experimental studies

Conclusions

Channelling in bent crystals

Figure: M. Romagnoni et al., Crystals 2022, 12(9)

LHC FT double crystal setup proposals

IR3 crystal design layout parameters

Property		Specification		
Device		TCCS (CRY1)	TCCP (CRY2)	
Material		Si	Si	
Bending angle (µrad)		50	7000	
Length (mm)		4	70	
Bending radius (m)		80	10	
	TCCS: identical to crystals already used		TCCP: new challenging crystal	

Figure: G. Azzopardi

In the context of collimation

Layout and simulated Performance for a LHC Fixed-Target Test Stand | P. Hermes

IR3 Proof of Principle

- Key devices for IR3 setup could already be installed during LHC Run 3 (around 2025) for a proof-of-principle setup
- Main goals:
 - Measure achievable PoT: currently only simulation based
 - Assess performance of CRY2 in TeV range (only available at LHC)
 - Gain experience / develop solutions for expected operational challenges: crystal alignment, establishing double channelling, etc.
 - Possibly even first precession measurements

IR3 Proof of Principle

- Devices needed for the proof of principle setup:
 - Crystal 1 in operational goniometer
 - Target + Crystal 2 in goniometer assembly
 - For first precession measurements: detector incl. spectrometer dipole
 - One (for low intensity only) or multiple absorbing collimators
- Where possible: create and use synergies with final HL-LHC setup

- IR3 layout defined in 2019 for final experiment
- Visit of LHC tunnel early 2022 with colleagues from STI → received feedback on integration aspects

6451m

6430m

- IR3 layout defined in 2019 for final experiment
- CRY2 location revised to enable PoP (see next slides)

CRY2 Location in PoP setup

- Final IR3 setup: install 4Tm spectrometer dipole
- Not compatible with PoP timeline
- Idea: use existing beam orbit corrector dipole as spectrometer
- New constraint:
 - CRY2 must be immediately adjacent to vertical orbit corrector

Initially proposed CRY2 Location

Courtesy of D. Mirarchi

New proposed CRY2 location

Max. field 1.87Tm

New proposed CRY2 location

Problem: no space downstream for detector hardware

New proposed CRY2 location

Updated Layout

Absorbing Collimators

Updated Layout

Absorbing collimator

TCLA.A5R3.B1

6755m

- Existing vertical collimator downstream of CRY2
- Compatible with low intensity PoP tests (some few 10¹¹ protons)
- IR3: space available for additional collimators downstream of CRY2

Layout goals

- Devices needed positions assigned
 - ☑ **Crystal 1** in operational goniometer: 6430m
 - ☑ **Target + Crystal 2** in goniometer assembly: 6674.5m
 - ☑ **Spectrometer dipole**: ~6674.9m (move existing MCBWV.4R3.B1)
 - ☑ **Absorbing collimators**: 6755m (existing)

Beam dynamics simulations

Goal of beam dynamics simulations

- Beam orbit simulations:
 - Verify safe separation between main beam and channelled halo
 - Verify that residual of channelled halo is safely removed
- Simulate expected **efficiency** (protons on target)
- Simulate performance measurements of **CRY2 in TeV range**
- Probe possible solutions for expected **operational challenges**: crystal alignment, establishing double channelling, etc.

Beam orbit simulations 6.8 TeV

Protons on target

- Combined particle tracking and Monte-Carlo particle-matter interactions
- Integrated framework in SixTrack, established tool with long experience benchmarked with machine data
- Follow trajectory of each particle and compare with machine aperture
- Heavy simulations of 20 Million initial particles on cluster of CPUs

Protons on target

• Concept:

- Simulate particles impacting the TCP (particle-matter interaction)

 → transverse distribution based on assumptions
- Follow their trajectory
- If impact on CRY1: simulate channelling process
- Count impacts on Target/CRY2
- First step: CRY1 alignment

Crystal alignment

Crystal efficiency: sensitive to angular orientation (at 7 TeV \sim µrad) \rightarrow crystals on rotatable goniometers

Wrong orientation No channelling possible Beam Channelled beam

Ideal orientation Max. channelling efficiency

27.09.2022

See talk by Q. Demassieux

Alignment in operation

Angular scans: Crucial to gauge crystal orientation in operation!

Illustrations: Courtesy of R. Cai and M. D'Andrea

See talk by Q. Demassieux

Layout and simulated Performance for a LHC Fixed-Target Test Stand | P. Hermes

CRY1 alignment in simulations

 Carry out a low statistics (2×10⁴ particles) simulation for each angle of the CRY1

- Step size 1µrad
- Identify optimal orientation
- Move on with high statistics for optimal orientation

Figure: Courtesy of K. Dewhurst

Protons on target efficiency

	ТСР	CRY1	Target
Particle impacts	100%	18%	13%

- Simulated efficiency for 6.8TeV for CRY1 at same setting (5 σ) as TCP (not high intensity compatible)
- Delivers upper boundary for proton on target efficiency: 13%
- Each configuration envisaged requires dedicated simulations
- PoP: validate these simulations!

Upcoming challenges

Upcoming challenges

For IR3 FT operation

- CRY1 in shadow of the TCP
- CRY2 in shadow of TCP+CRY1
- BLM signals might be too weak to find the channelling

Proof of principle tests

- CRY1: can we align with main beam and calculate correct angle for retracted settings?
- CRY2: channelling of 6.8TeV protons not possible, need to align using lower energy beams

Upcoming challenges

- CRY2 channelling efficiency at 400GeV can be measured at H8 using SPS beams
- How to measure channelling efficiency of CRY2 at ~ 1TeV?
- Idea: use MediPix pixel tracking detector before and after CRY2 with channelled halo using 1TeV LHC beam
 - Identify when double channelling is established
 - Measure intensity of double-channelled halo
- Larger beam size at 1TeV: preliminary simulations indicate challenges – solutions under investigation

Preparatory beam tests before PoP

- Use existing crystals in LHC IR7 and collimator in IR3 to **demonstrate principle of capturing secondary beam halo** (inverse setup)
- **Confirm proposed orbit setup with bump** should not disturb nominal OP
- Studies with optimized phase advance TCP-CRY1 → demonstration that protons on target efficiency can be improved by changing magnet configuration

Conclusions

- Challenging double crystal proposal for EDM/MDM measurements
- Require experimental verification of aspects that impact their performance
- IR3 installation during LHC Run 3 for test purposes
- Gain experience with operational challenges and demonstrate functionality
- Suitable locations for key devices identified
- First simulation campaigns with promising results
- Further simulations ongoing to
 - Design channelling efficiency measurements in TeV range
 - Develop concepts for solving operational challenges
 - Possible detector architecture for IR3 PoP

References

Presentations

Revised layout for fixed target experiments in IR3, PBC-FT WG – 11.03.2022 Possible crystal and magnet layout for FT experiments in IR3, PBC-FT WG – 28.10.2021 Fixed target layouts inspection, PBC-FT WG – 28.10.2021 Beam orbit with spectrometer for FT experiments in IR3, PBC-FT WG – 02.07.2021 Update on publication of IP3 and IP8 double-crystal layouts, PBC-FT WG – 20.11.2020

Publications

D. Mirarchi et al., Eur. Phys. J. C 80, 929 (2020)
M. Patecki et al., JACoW IPAC2022 (2022) 108-111, MOPOST024
P. Hermes et al. JACoW IPAC2022 (2022) 2134-2137, WEPOTK033

