

Fixed-target experimental results and perspectives at LHCb

Patrick Robbe for LHCb collaborations, IJCLab Orsay, 26/09/2022

The LHCb Detector

- Acceptance: 2 < η < 5
- Vertex detector (VELO)
 - Impact Parameter resolution ~20 μ m
- Tracking System

$$\frac{\Delta p}{p} = 0.5 - 1\%$$

- RICH
 - K/ π /p separation
- Electromagnetic and hadronic calorimeters
- Muon system
- Upgraded for Run 3

LHCb collision modes

Fixed Target Physics With LHCb

- Inject gas between 1 day and 2 weeks.
- The pressure is so low that it does not interfere with the running of the LHC and data can be collected also in parallel with *pp* collisions by LHCb.
- Operation in 2015 demonstrated that running with SMOG in completely transparent for the LHC: it is considered now as routine operation.
- During Heavy Ion runs, we also took data in parallel collisions/beam-gas.

LHCb Acceptance

Fixed-target physics program: SMOG

- SMOG = System for Measuring Overlap with Gas
- Noble gas at $\sim 2x10^{-7}$ mbar pressure injected in LHCb vacuum in the LHCb interaction region
- Originally used to determine luminosity: since 2015, use it to collect fixed-target collision data for physics
- $\sqrt{s_{NN}} = 69-110$ GeV, between SPS and RHIC
- $-3.0 < y^* < 0$
- Access nPDF (nuclear PDF) anti-shadowing region
- Probe intrinsic charm content in the nucleon
- Inputs to astrophysics

6

Production of charm in fixed target

- Use two of the data samples: *p*He (4 TeV beam, 86 GeV) and *p*Ar (6.5 TeV beam, 110 GeV)
- Largest sample is *p*He, 7.6 ± 0.5 nb⁻¹
- Measurement of prompt production of $J/\psi (\rightarrow \mu^+ \mu^-)$ and $D^0(\rightarrow K\pi)$

Fixed-target luminosity

- Use *p*-*e*⁻ elastic scattering (Mott)
- <u>Pro</u>:
 - Only elastic regime in LHCb acceptance:
 - θ >10 mrad $\rightarrow \theta_s$ < 29 mrad, Q²<0.01 GeV²
 - Cross-section very well-known
 - Clear event signature: single low $p_{\rm T}$ electron track and nothing else
 - Background comes mainly from conversions: it is charge-symmetric and can be estimated precisely from single positron events
- <u>Cons</u>:
 - Small cross-section (1000 less than hadronic cross-section)
 - Low momentum electrons = low acceptance and reconstruction efficiency

Fixed-target luminosity

- Electron spectra in very good agreement with simulation
- Data confirm charge symmetry of background
- Systematic from variations of selection cuts: largest dependency is on azimuthal angle

 Equivalent to gas pressure of 2.4x10⁻⁷ mbar, as expected

[PRL 122 (2019) 132002]

Production of charm in fixed target

 Cross-section as a function of rapidity (y*) and p_T to test intrinsic charm content of proton (would be seen as increase of cross-section at negative rapidities compared to predictions)

Charmonium in pNe collisions at 68.5 GeV

- Charmonium production modified by initial and final state effects in proton-nucleus collisions
 - Modification of PDFs inside nuclei, CGC: common to J/ψ and $\psi(2S)$
 - Nuclear absorption, multiple scattering, energy loss
 - Comovers: different between J/ψ and $\psi(2S)$
- Dataset: collisions of 2.5 TeV protons and Ne nuclei at rest: $\sqrt{s_{NN}} = 68.5$ GeV
- Luminosity 21.7 \pm 1.4 nb^{-1}
- Center-of mass rapidity coverage $-2.3 < y^* < 0$

Charmonium in pNe collisions at 68.5 GeV

Differential J/ψ production cross-section

- HELAC-ONIA using CT14NLO and nCTEQ15 under-predicts the data
- Good agreement with predictions with and without intrinsic charm contribution [PRC103 (2021) 035204]

Charmonium in pNe collisions at 68.5 GeV

- Total J/ ψ cross-section: extrapolation to full phase space using Pythia8+CT09MCS PDF, assuming forward-backward symmetry
 - Shows a power-low dependency with center-of-mass energy $\sqrt{s_{NN}}$
- $\psi(2S)$ to J/ ψ production ratio in good agreement with other proton-nucleus measurements at small values of target atomic mass number, A
- First measurement of $\psi(2S)$ to J/ ψ production ratio with SMOG

D^0 and J/ψ in PbNe collisions at 68.5 GeV

34

- First measurement in fixed-target nucleus-nucleus collisions at the LHC
- Search for the potential formation of quark-gluon plasma.
- Look for suppression of charmonium states
- Dataset: 2.5 TeV lead ions on Ne nuclei: $\sqrt{s_{NN}} = 68.5$ GeV
- Centrality of the collision determined from the total energy deposited in ECAL

D^0 and J/ψ in PbNe collisions at 68.5 GeV

Production ratio $J/\psi / D^0$ vs. p_T and y*

- Suppression of cc
 bound states: measure charmonium together with the total charm quark
 production
- Production of *D*⁰ mesons is a large fraction of the total charm quark production and is a reference for studying suppression of charmonium in the collision

D^0 and J/ψ in PbNe collisions at 68.5 GeV

- Assuming
 - $\sigma_{J/\psi} \propto \langle N_{coll} \rangle^{\alpha'}$ and
 - $\sigma_{D^0} \propto \langle N_{coll} \rangle$:
 - -> $\frac{\sigma_{J/\psi}}{\sigma_{(D^0)}} \propto \langle N_{coll} \rangle^{\alpha'-1}$
- $\alpha' = 0.82 \pm 0.07$
- Agree with measurements from protonnucleus collisions by NA50 [PLB410 (1997) 337]
- J/ψ production affected by additional nuclear effects compared to D⁰ but no anomalous J/ψ suppression is observed that could indicate formation of QGP

$J/\psi / D^0$ ratio as a function of N_{coll}

SMOG: anti-protons in *p*He collisions at 110 GeV

LHCb-PAPER-2022-006 arXiv:2205.09009

Detached anti-protons in pHe collisions at 110 GeV

- Exclusive measurement: dominant contribution from $\overline{\Lambda}$ reconstructed, $\overline{\Lambda} \rightarrow \overline{p}\pi^+$: $(50.7 \pm 0.3) \times 10^{-3}$ candidates
- Inclusive measurement:
 - Track from anti-hyperon decay: $\overline{H} = \overline{\Lambda}, \overline{\Sigma}, \overline{\Xi}, \overline{\Omega}$
 - Fit of \bar{p} impact parameter:
 - Prompt, detached, secondary interaction in material

Detached anti-protons in pHe collisions at 110 GeV

• Sizeable underestimation of detached \bar{p} constribution in most models used in cosmic ray physics.

Prospects

LHCb Phase I Upgrade (Run 3 and 4)

• New detector installed during LS2, starting taking data now and will continue through Run 4

- Increase reach for higher multiplicity collisions with new detectors
- Full software trigger:
 - Remove hardware L0 trigger
 - Readout full detector at 40 MHz

[LHCb-TDR-020]

LHCb Run 3: SMOG 2

[LHCB-PUB-2018-015]	SMOG largest sample p–Ne@68 GeV	SMOG2 example p–Ar@115 GeV
Integrated luminosity	$\sim 100 \text{ nb}^{-1}$	100 pb^{-1}
syst. error on J/ψ x-sec.	6-7%	2-3 %
J/ψ yield	15k	35M
D ⁰ yield	100k	350M
Λ_{c} yield	1k	3.5M
$\psi(2S)$ yield	150	400k
Y(1S) yield	4	15k
Low-mass (5 < $M_{\mu\mu}$ < 9 GeV/ c^2) Drell-Yan yield	5	20k

~1 year of data taking in parallel with *pp* collisions

- Fixed target setup upgraded, with a storage cell between -50 cm and -30 cm, upstream of IP
 - Well defined interaction region
 - Increase of gas pressure and luminosity by 2 orders of magnitude
 - Gas feed system to switch quickly between different types of gases (H, D, He, N, O, Ne, Ar) and to measure precisely the gas density (for absolute cross-section measurements)

LHCb Run 3: Trigger Scheme

Possibility to run in parallel *pp* and fixed target collisions thanks to new trigger scheme and performances of reconstruction

LHCb Run 4: Magnet Tracking Stations (MS)

- Proposal to add tracking stations inside the magnet to increase coverage at low η and p_T
 - Soft pion (eg. $D^{*+} \rightarrow D^0 \pi^+$) and converted photons ($\chi_c \rightarrow J/\psi \gamma$)
- Technology: Triangular Extruded Scintillating Bars (same as D0), ongoing R&D
- Plan to install a small prototype inside the magnet during 2022 Year-End Technical Stop and full detector during LS3

LHCb Run 5: polarized gas target

- R&D has started for a polarized gas target to complement SMOG2 (LHCspin)
 - Compact dipole magnet static : transverse field
 - Superconductive coils and iron yoke configuration fits the space constraints (small space upstream of VELO)
 - $B = 300 \text{ mT}, \Delta B/B = 10\%$. Possibility to invert polarity.
- Achievable luminosity: 8 x 10³² cm⁻².s⁻¹

Conclusions

- Feasibility of a fixed-target physics program at LHCb established with SMOG, still with low statistics for heavy flavour physics
- SMOG2 installed and ready for data taking in Run 3: will increase a lot the possibilities
- Ideas for future upgrades starting