
MAGNETIC DIPOLE MOMENTS OF 
HEAVY BARYONS AND QUARKS

2nd Workshop on electromagnetic dipole moments of unstable particles  
@ Lake Garda, 25-28 September 2022

Emi KOU (IJCLab) 
for charm g-2 collaboration @ Orsay 

S. Barsuk, O. Fomin, L. Henri, A. Korchin, V.A. Kovalchuk  

M. Liul, A. Natochii, E. Niel, P. Robbe, A. Stocchi and F. Callet



Introduction

 A. Fomin               Measuring the EMDM of Λc.   Performance assessment of layouts in IR3 and IR8 of the LHC

 Spin precession in a bent crystal 

4

Θμ ≡ ∠ (ξi ξf ) = (1 + γa) Θ a = g − 2
2 , Θ = L

R

γ, g, a − Lorentz factor, g-factor, anomalous MDM of Λc

Θ, L, R − deflecting angle, length, curvature radius of the crystal

!  V.G. Baryshevsky, Sov. Tech. Phys. Lett. 5 (1979) 73.          !  V.L. Lyuboshits, Sov. J. Nucl. Phys. 31 (1980) 509 [inSPIRE]. 
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!  A. Fomin et al. Eur. Phys. J. C (2020) 80:358  [1909.04654]   

Due to the space-inversion symmetry of the strong interaction 
Λc+ polarisation is perpendicular to the reaction plane

p + p → Λ+
c + XProduction of Λc+ in a fixed target
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Fomine et al, JHEP 08 (’17) 120 
Aiola Phys.Rev.D 103 (2021) 7

The difference between the initial and  
final polarisations of c baryon gives  

information of the g-factor

A new experiment is proposed to measure the MDM of charmed baryon.  
Short life time is compensated by the strong magnetic field created by bent crystal.

Sensitivity to the Λc MDM is estimated to be Δg≈0.35(0.14) for 
LHCB (IR3) after 10 years of experiment,  

assuming the initial Λc polarisation to be 0.26 (0.22). 

A.S. Fomin et al. Eur. Phys. J. C (‘20) 80:358
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In relation to this new proposal, we will briefly review the 
current status of  

✓ The prediction of the Λc MDM   
✓ The polarisation measurement of Λc at LHC



　MAGNETIC MOMENT OF ΛC AND CHARM 
QUARK



LEPTON

• The spin 1/2 particle such as leptons (electron, muon…) have a 
magnetic moment of the form 

where Q and m are the charge and mass of the particle.  

• The g factor is 2 at the classic level while it is slightly modified by 
the quantum effect. This correction is called anomalous magnetic 
moment and defined as a=(g-2)/2.  

• There is a longstanding question of muon anomalous magnetic 
moment: the experiment is 3.6 sigma away from experiment (hint of 
new physics?) a𝝻exp.=116592091(54)(33) × 10−11 .


a𝝻the.=116591803(1)(42)(26) x 10-11

3.6σ effect!

gelectron=2.00231930436182 ± (2.6×10−13)
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　MAGNETIC MOMENT OF ELEMENTARY PARTICLES
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PROTON

　MAGNETIC MOMENT OF “ELEMENTARY” PARTICLES

• The proton magnetic moment is also measured very precisely. But 
how do we interpret this result?  

• If we consider the proton to be a fundamental particle, the 
magnetic moment can be written as  

• g>>2 indicates that the proton is NOT a fundamental particle.

gproton=5.585694702(17)

��

pp gµ =
gP
2

|e|
2mP



• In quark model, magnetic moment of proton is a sum of the 
magnetic moment of the constituent quark (up-up-down) with fully 
symmetric spin configuration.  

• Then the magnetic moment of proton is computed as 

• In the isospin limit μd=-1/2μu, we find 

Particles and Symmetries CHAPTER 5. QUARKS AND HADRONS

One may write this wavefunction more explicitly with the various terms multiplied out,

 proton
spin+flavor =

⇥
2 u " u " d # � u # u " d " � u " u # d "

+ 2 u " d # u " � u # d " u " � u " d " u #
+ 2 d # u " u " � d " u # u " � d " u " u #

⇤
/
p

18 , (5.5.9)

(where we have also normalized the result). You can, and should, check that this does satisfy the
required condition of symmetry under interchange of spins and flavors of any pair of quarks. Similar
constructions can be performed for all the other members of the spin 1/2 baryon octet.

One notable feature of the set of octet baryons, shown in Table 5.5 , is the presence of two di↵erent
baryons whose quark content is uds, specifically the ⇤ and the ⌃0. This is not inconsistent. When
three distinct flavors are involved, instead of just two, there are more possibilities for constructing
a spin+flavor wavefunction with the required symmetry. A careful examination (left as a problem)
shows that there are two independent possibilities, completely consistent with the observed list of
spin 1/2 baryons.

The mass values in Table 5.5 show that for spin 1/2 baryons, just as for spin 3/2 baryons, baryons
with strange quarks are heavier than those with only up and down quarks; each substitution of a
strange quark for an up or down raises the energy of the baryon by roughly 120–170 MeV.

5.6 Baryon number

Baryon number, denoted B, is defined as the total number of baryons minus the number of an-
tibaryons, similar to the definition (4.7.1) of lepton number L. Since baryons are bound states of
three quarks, and antibaryons are bound states of three antiquarks, baryon number is the same as
the number of quarks minus antiquarks, up to a factor of three,

B = (# baryons)� (# antibaryons) = 1
3

⇥
(# quarks)� (# antiquarks)

⇤
. (5.6.1)

All known interactions conserve baryon number.9 High energy scattering processes can change the
number of baryons, and the number of antibaryons, but not the net baryon number. For example, in
proton-proton scattering, the reaction p+p ! p+p+n+ n̄ can occur, but not p+p ! p+p+n+n.

5.7 Hadronic decays

Turning to the decays of the various hadrons listed in Tables 5.3–5.6 , it is remarkable how much
can be explained using a basic understanding of the quark content of the di↵erent hadrons together
with considerations of energy and momentum conservation. As an example, consider the baryons in
the spin 3/2 decuplet. The rest energy of the � baryons is larger than that of a nucleon by nearly
300 MeV. This is more than the ⇡ 140 MeV rest energy of pions, which are the lightest mesons.
Consequently, a � baryon can decay to a nucleon plus a pion via strong interactions, which do not
change the number of quarks minus antiquarks of each quark flavor. (Specifically, a �++ can decay

9This is not quite true. As with lepton number, the current theory of weak interactions predicts that there are
processes which can change baryon number (while conserving B�L). The rate of these processes is so small that baryon
number violation is (so far) completely unobservable.

9

8

This shows that the quark g 
factor value depends strongly 
on the quark mass we assume! 

　MAGNETIC MOMENT OF ELEMENTARY PARTICLES
QUARK

µq =
gq
2

|e|Qq

2mq
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　MAGNETIC MOMENT OF ΛC AND CHARM QUARK

• We compute the Λc (udc, spin anti-symmetric state) magnetic 
moment in the quark model: 

• Heavy quark chiral Perturbation Theory: the fact that the light 
degree of freedom is spineless configuration leads to a 
negligible higher order correction.  

• Various theoretical estimates of Λc magnetic moment can be 
summarised as  

9
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In this paper we revisit the idea of measuring the magnetic dipole moments of the charm baryons
and, in particular, of ⇤+

c by studying the spin precession induced by the strong e↵ective magnetic
field inside the channels of a bent crystal. We present a detailed sensitivity study showing the
feasibility of such an experiment at the LHC in the coming years.

PACS numbers: 13.30.Eg, 13.40.Em, 13.88+e, 14.20.Lq, 61.85.+p

I. INTRODUCTION

The magnetic dipole moment (MDM) of a particle is
its fundamental characteristic that determines the torque
which particle experiences in an external magnetic field.
The MDMs of many particles are presently known [1].
For electron the QED prediction agrees with experimen-
tally measured value up to very high precision. For muon
the measurement of the BNL E821 experiment [2] dis-
agrees with the Standard Model prediction by 3–4 stan-
dard deviations, which may suggest physics beyond the
Standard Model. The disagreement for the muon g � 2
is the subject of many studies (see, e.g., review [3]). The
MDM of the ⌧ -lepton has not been measured so far and is
of great interest for testing calculations in the Standard
Model [4].
For hadrons, the MDMs are measured for the baryon

octet with JP = 1

2

+

. Historically, reasonable agree-
ment between the measured MDM and predictions of
the quark model was important to substantiate the con-
stituent quark models of the hadrons.
In general, the MDM of the spin- 1

2
particle is expressed

as

~µ =
2µ

~
~S, µ =

q~
2mc

g

2
, (1)

where ~S = ~
2
~�, m is the particle mass, q is the

particle electric charge, g is the gyromagnetic factor.
The value g = 2 corresponds to a Dirac particle with-
out magnetic moment anomaly. Usually, the MDM of
baryons is measured in units of the nuclear magneton

⇤ fomax.ua@gmail.com
† korchin@kipt.kharkov.ua
‡ stocchi@lal.in2p3.fr

µN ⌘ e~/(2mpc) [1], where mp is the proton mass and e
is the elementary charge.

It would be very important to measure the MDM of
the charm baryons ⇤+

c
(udc) and ⌅+

c
(usc), which have not

been measured so far because of their very short lifetime
of the order of 10�13 s.

There has been many calculations of the MDM of the
charm baryons in various models of their structure [5–
21]. As for the ⇤+

c
baryon, majority of the calculations

predict the MDM and g-factor in the ranges

µ(⇤+

c
)

µN

= 0.37–0.42, g(⇤+

c
) = 1.80–2.05. (2)

Thus, an experimental study of the MDM of heavy
baryons can be useful to distinguish between di↵erent
theoretical approaches.

One of the motivations for measurement of the MDM
of the heavy baryons is also studying the MDM of the
charm quark. If this quark behaves as a point-like Dirac
particle, then the corresponding gyromagnetic factor gc
is equal or close to 2, while if the charm quark has a
composite structure we can expect a sizable deviation
from this value.

In the quark model the MDM of the heavy baryon is
expressed in terms of the MDMs of the heavy and light
quarks. In particular, for the charm baryons, the spin
and flavor structure of the ground-state baryons ⇤+

c
and

⌅+

c
implies that (see, e.g., Ref. [5])

µ(⇤+

c
) = µc, µ(⌅+

c
) =

1

3
(2µu + 2µs � µc) . (3)

MDMs in Eqs. (3) depend on the MDM of the charm
quark. Let us consider ⇤+

c
and take “e↵ective” mass of

the c-quark mc = 1.6 GeV as suggested from the char-
monia spectroscopy [5]. Keeping explicitly the g-factor
of the charm quark we can write

µ(⇤+

c
)

µN

= 0.39
gc
2
, g(⇤+

c
) = 1.91

gc
2
. (4)
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µN=|e|/2MP is called  
the nuclear magneton

µ⇤c = µc =
gc
2

Qc|e|
2mc
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No contribution 
from light quarks



5 angles to disentangle different contributions 
(θ, ϕ, θ’, ϕ’, θγ’γ) 

which is in BESIII/CLEO paper 
(θ3, ϕ3, θ1, ϕ1, θ2) 

Karl et al PR D13 ‘76

θ’ e+e-

γ (@ c.m.s)

𝝌cJ

e+e-→ψ(2S)→𝛘cJγ

θ 𝝌cJ γ (@ 𝝌cJ r.f)
l+

l-

J/ψ

𝛘cJ-→J/ψγ→l+l-γ θγ’γ

γ (@ 𝝌cJ r.f)

𝝌cJ

γ’ (@ 𝝌cJ r.f)

J/ψ

ψ(2s)

ψ(2S)→𝛘cJγ’→J/ψγγ’
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PREDICTING ΛC MAGNETIC MOMENT WITH BESIII RESULT

 The charm quark magnetic moment can be  
determined  by the charmonium radiative decays



PREDICTING ΛC MAGNETIC MOMENT WITH BESIII RESULT
arXiv: 1701.01197 (also see CLEO 0910.0046)6

TABLE I. Fit results for aJ
2,3 and bJ2,3 for the process of ψ(3686) → γ1χc1,2 → γ1γ2J/ψ; the first uncertainty is statistical, and the second is

systematic. The ρJa2,3b2,3 are the correlation coefficients between aJ
2,3 and bJ2,3.

χc1
a1
2 = −0.0740 ± 0.0033 ± 0.0034, b12 = 0.0229 ± 0.0039 ± 0.0027

ρ1a2b2 = 0.133

χc2

a2
2 = −0.120± 0.013 ± 0.004, b22 = 0.017 ± 0.008 ± 0.002

a2
3 = −0.013± 0.009 ± 0.004, b23 = −0.014 ± 0.007 ± 0.004

ρ2a2b2 = −0.605, ρ2a2a3
= 0.733, ρ2a2b3 = −0.095

ρ2a3b2 = −0.422, ρ2b2b3 = 0.384, ρ2a3b3 = −0.024

for χc1 and χ2/ndf = 5985.2/5840 = 1.02 for χc2, demon-
strating that the fit gives an excellent representation of the
data.

V. MEASUREMENT OF
B(ψ(3686) → γχCJ → γγJ/ψ) AND SEARCH FOR THE

PROCESS ηc(2S) → γJ/ψ

With the selected e+e− → γ1γ2J/ψ candidates, we mea-
sure the product branching fractions of the decay ψ(3686) →
γ1χc0,1,2 → γ1γ2J/ψ and search for the process ηc(2S) →
γ2J/ψ. For the J/ψ → e+e− channel, additional require-
ments are applied to suppress the background from radiative
Bhabha events [e+e− → γISR/FSRe

+e−, where γISR/FSR

denotes the initial-/final-state radiative (ISR/FSR) photon(s)].
Since the electron (positron) from radiative Bhabha tends to
have a polar angle cos θe+(e−) close to +1 (-1), we apply a
requirement of cos θe+ < 0.3 and cos θe− > −0.3. These re-
quirements suppress 77% of the Bhabha events with a reduc-
tion of the signal efficiency by one-third. The corresponding
MC-determined efficiencies are listed in Table II.

A 4C kinematic fit has the defect that the energy of a fake
and soft photon will be modified according to the topology
of a signal event due to relatively large uncertainty, which re-
sults in a peaking background signature in the M4C(γ2J/ψ)
invariant-mass spectrum. To remove the peaking background,
such as radiative Bhabha and radiative dimuon (e+e− →
γISR/FSRµ

+µ−), a three-constraint (3C) kinematic fit is ap-
plied, in which the energy of the soft photon (γ1) is left free in
the fit. The detailed MC studies indicate that the 3C kinematic
fit does not change the peak position of the invariant mass for
signals and the corresponding resolutions are similar to those
with the 4C kinematic fit.

V.A. Background study

The backgrounds mainly come from ψ(3686) transitions to
J/ψ and from e+e− → &+&−nγISR/FSR(& = e/µ). The
other background, including ψ(3686) → ηJ/ψ, γISRJ/ψ and
non-J/ψ backgrounds, is only 0.3% of that from ψ(3686),
which is neglected.

The backgrounds from ψ(3686) transitions to J/ψ in-
clude ψ(3686) → γγJ/ψ,π0π0J/ψ,π0J/ψ. High-statistics
MC samples of these decays are generated to determine

their distributions and contributions. With the published
branching fractions [17], which have been measured precisely
by different experiments, the estimated number of events
for ψ(3686) → π0π0J/ψ,π0J/ψ and the efficiency for
ψ(3686) → γγJ/ψ are obtained as summarized in Table II.

The second major source of background in-
cludes radiative Bhabha and dimuon processes,
e+e− → &+&−γISR/FSR(γISR/FSR) and ψ(3686) →
&+&−γFSR(γFSR) (l = e/µ). To precisely describe the shape,
the background is divided up into two parts: &+&− with one
radiative photon and &+&− with two radiative photons. For
the background from ψ(3686)→ &+&−γFSR(γFSR), the ratio
of event yields between the two parts (N!+!−γγ/N!+!−γ) is
obtained by a MC simulation. For the background from ra-
diative Bhabha/dimuon processes, the ratio N!+!−γγ/N!+!−γ

is obtained by a fit to a 928 pb−1 data sample taken at a
center-of-mass energy of 3.773 GeV. After the event selection
imposed on the data, the remaining events are mainly radiative
Bhabha/dimuon events, and a small contribution originates
from ψ(3770) → γχcJ and decays of ψ(3686) produced in
the ISR process. In the fit, the shapes of the M3C(γ2&+&−)
distributions for the Bhabha/dimuon processes are determined
from a ψ(3686) → &+&−γFSR(γFSR) MC sample by shifting
the M3C(γ2&+&−) from ψ(3686) to ψ(3770) according to
the formula m′ = a ∗ (m − m0) + m0, where m0 = 3.097
GeV/c2 is the mass threshold of γJ/ψ, and the coefficient
a = (3.773−m0)/(3.686−m0) = 1.15 shifts the events from
3.686 to 3.773 GeV. The shapes of the backgrounds are based
on MC simulation, while the amplitude of each component
is set as a free parameter. Thus, the cross section weighted
ratio of the backgrounds e+e− → &+&−γISR/FSR(γISR/FSR)
and ψ(3686) → &+&−γFSR(γFSR) for the two parts is
Ne+e−γγ/Ne+e−γ = 1.203 ± 0.081 (Nµ+µ−γγ/Nµ+µ−γ =
0.689 ± 0.044) for the e+e− (µ+µ−) channel. The quan-
titative results and shapes will be used in the simultaneous
fit.

V.B. Simultaneous fit to M3C(γ2%
+%−)

Figure 3 shows the M3C(γ2&+&−) distributions for se-
lected candidates of the two channels of J/ψ → e+e− and
J/ψ → µ+µ−, where clear signals of χc0,1,2 can be ob-
served. No evident ηc(2S) signature is found. A simultane-
ous unbinned maximum likelihood fit is performed to obtain
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mass and width of χc0,1,2 with ±1σ of the world average val-
ues [17] for the signal MC shape. To estimate the uncertainty
due to the background of ψ(3686) → π0J/ψ,π0π0J/ψ and
the ratio of N!+!−γγ/N!+!−γ for Bhabha and dimuon back-
grounds, alternative fits are performed in which the numbers
of expected background events (see Table II) and the ratio of
Nγγ!+!−/Nγ!+!− are varied by ±1σ. For χc0,1,2, the largest
differences in the signal yields from the nominal values are
taken as the systematic uncertainty. For the ηc(2S) case, to
be conservative, the one corresponding to the largest upper
limit is taken as the final result. All systematic uncertainties
of the different sources are summarized in Table IV. The total
systematic uncertainties are obtained by adding the individ-
ual ones in quadrature, thereby assuming all these sources are
independent.

TABLE IV. Summary of all systematic uncertainties for the branch-
ing fractions measurement.

Source χc0 (%) χc1 (%) χc2 (%) ηc(2S) (%)

Nψ(3686) 0.9 0.9 0.9 0.9
Tracking efficiency 0.2 0.2 0.2 0.2
Photon detection 2.0 2.0 2.0 2.0
Kinematic fit 0.6 0.5 0.5 0.4
J/ψ mass window 0.6 0.6 0.6 0.6
Other selection 2.4 2.2 2.3 2.4
B(J/ψ → e+e−/µ+µ−) 0.6 0.6 0.6 0.6
Interference 0.7 - - -
Signal shape 0.7 0.9 1.0 -
Background 0.1 0.1 0.1 -
Total 3.6 3.4 3.5 3.4

VII. RESULT AND SUMMARY

Based on 106 million ψ(3686) decays, we measure the
higher-order multipole amplitudes for the decays ψ(3686) →
γ1χc1,2 → γ1γ2J/ψ channels. The statistical significance of
nonpure E1 transition is 24.3σ and 13.4σ for the χc1 and χc2

channels, respectively. The normalized M2 contribution for
χc1,2 and the normalized E3 contributions for χc2 are listed in
Table I. Figure 4 shows a comparison of our results with pre-
viously published measurements and with theoretical predic-
tions with mc = 1.5 GeV/c2 and κ = 0. The results are con-
sistent with and more precise than those obtained by CLEO-
c [5] and confirm theoretical predictions [1, 2]. The M2 con-
tributions for ψ(3686) → γ1χc1 (b12), χc1 → γ2J/ψ (a12),
and χc2 → γ2J/ψ (a22) are found to be significantly nonzero.
The ratios of M2 contributions of χc1 to χc2 are independent
of the mass mc and the anomalous magnetic moment κ of the
charm quark at leading order in Eγ/mc. They are determined
to be

b12/b
2
2 = 1.35± 0.72,

a12/a
2
2 = 0.617± 0.083.

(8)

The corresponding theory predictions are (b12/b
2
2)th =

1.000± 0.015 and (a12/a
2
2)th = 0.676± 0.071 [5]. By using

the most precise measurement of the M2 amplitudes a12 and
by taking mc = 1.5 ± 0.3 GeV/c2, the anomalous magnetic
moment κ can be obtained from Eq. (1),

1 + κ =−
4mc

Eγ2 [χc1 → γ2J/ψ]
a12

=1.140± 0.051± 0.053± 0.229,
(9)

where the first uncertainty is statistical, the second uncertainty
is systematic, and the third uncertainty is from mc = 1.5 ±
0.3 GeV/c2.

Based on the multipole analysis, we measure the product
branching fractions for ψ(3686) → γχc0,1,2 → γγJ/ψ to be
(15.8 ± 0.3 ± 0.6) × 10−4, (351.8 ± 1.0 ± 12.0) × 10−4,
and (199.6 ± 0.8 ± 7.0) × 10−4, respectively, where the
first uncertainty is statistical and the second is systematic. In
Fig. 5, the product branching fractions are compared to pre-
vious results from BESIII [18], CLEO [36], and the world
average [17]. The world average refers to the product of the
average branching fraction of ψ(3686) → γ1χcJ and the av-
erage branching fraction of χcJ → γ2J/ψ, where the results
of BESIII and CLEO are not included in the world average
values. For all χcJ , our results exceed the precision of the
previous measurements. Compared to the previous BESIII re-
sult, the results are consistent within 1σ, but we have consid-
ered the higher-order multipole amplitudes and improved the
systematic uncertainty due to a more precise measurement of
the total number of produced ψ(3686) [19]. In addition, our
measurement for the χc0 channel is 3σ larger than the result
from CLEO and 3σ larger than the world average value, while
for the χc1,2, our results are consistent with previous mea-
surements. There are theoretical predictions for the branch-
ing fraction ψ(3686) → γχc0,1,2 by several different mod-
els [14–16] without consideration of higher-order multipole
amplitudes, which agree with each other poorly. The results
in this measurement will provide a guidance for the theoretical
calculations.

We also search for the decay ηc(2S) → γJ/ψ through
ψ(3686) → γηc(2S). No statistically significant signal is
observed. Considering the systematic uncertainty, an upper
limit on the product branching fraction is determined to be
B(ψ(3686)→ γηc(2S))×B(ηc(2S) → γJ/ψ) < 9.7×10−6

at the 90% C.L., where the systematic uncertainty is incor-
porated by a factor 1/(1 − σsyst.) for conservative. Com-
bining the result of B(ψ(3686) → γηc(2S)) obtained by
BESIII [37], the upper limit of the branching fraction for
ηc(2S) → γJ/ψ is B(ηc(2S) → γJ/ψ) < 0.044 at the 90%
C.L. Using the width of ηc(2S) of 11.3+3.2

−2.9 MeV/c2 [17], our
upper limit implies a partial width of Γ(ηc(2S) → γJ/ψ) <
0.50 MeV/c2. Although this result agrees with the prediction
of LQCD (0.0013 MeV/c2) [38], it clearly has a very limited
sensitivity to rigorously test the theory.
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Extracting anomalous magnetic moment error from charm mass 
mc=1.5±0.3 GeV

11

=
gc
2

µ⇤c

µN
= 0.48± 0.04
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Thus, the Λc magnetic moment is determined very precisely 

Slightly higher than the 
theory predictions. This sets 

our precision goal ~10%



OTHER CHARMED BARYON MAGNETIC MOMENT
• Spin anti-symmetric state 

which is the same as Λc magnetic moment 

• Spin symmetric state 
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µ⌅0,+
c

= µc

Thus, the ratio of the proton and the neutron magnetic moments is quark mass free
µP /µN = �3/2, which can be compared to the experimental value �1.460 · · ·, in a very
good agreement.

Although these results are very convincing, since it is known that the proton spin is
actually carried mostly by the gluons, the relation between proton magnetic moment and
the quark magnetic moment might be more complex. At least, such a problem can be
avoided in the case of heavy baryons: at the infinite mass limit, the heavy baryon spin is
carried by the heavy quark. Nevertheless, the quark mass dependence would remain and
the certain uncertainty is unavoidable. Let us first see the the magnetic moment of ⇤c in
the naive quark model:

µ⇤c = µc =
|e|µ
3mc

=
2

3

mP

mc
µM (12)

If we choose the charm quark mass as the ”constituent quark mass“, i.e. mc = m⇤c �
2mq(1/3 GeV) = 1.7 GeV, we find µ⇤c = 0.39 n.m.. This value is higher than the value
found by BESIII in Eq. (). However, if we use the constituent quark mass obtained from
charmonium, e.g. from J/ , mc = mJ/ /2 = 1.5 GeV, we find µ⇤c = 0.44 n.m., which is
closer to the value in Eq. ().

One can also derive the charm quark mass independent relation with di↵erent charmed
baryons. It turned out that the other two triplet (spin 1/2, anti-symmetric) charmed
baryon, ⌅0

c and ⌅+
c have the same magnetic moment in the quark model:

µ⌅0,+
c

= µc = µ⇤c (13)

Thus, if a measurement of the magnetic moment of ⌅0,+
c can play an important role to test

the quark model description.
For the sextet (spin 1/2, symmetric) charmed baryons, the situation is very di↵erent.

We can find:

µ⌃++
c

= �1

3
µc +

4

3
µu, µ⌃+

c
= �1

3
µc +

2

3
µu +

2

3
µd, µ⌃0

c
= �1

3
µc +

4

3
µd (14)

which leads to the value (with mc = m⌃c � 2mq(1/3 GeV) = 1.8 GeV) µ⌃++
c

= 2.54 n.m.,

µ⌃+
c
= 0.54 n.m., µ⌃0

c
= �1.46 n.m. Even though this numerical value su↵ers from the

quark mass uncertainty, the sign for ⌃0
c seems to be opposite to the one of ⇤c, and the

magnetic moment of doubly-charmed ⌃++
c is much larger than ⇤c, which would be also

interesting to be tested. Note that the main decay channel of ⌃c is ⇤+
c ⇡.

Finally, let us discuss the another sextet (spin 1/2, symmetric) charmed baryon ⌅0+,0
c .

These baryons have the same quark content as ⌅+,0
c but their wave function are SU(3)

flavour symmetric. Since these states have the same quark contents and the same spin,
they can mix with the triplet ⌅+,0

c states. At the infinite mass limit, though, this mixing
is zero, i.e. ⌅+,0

c is the pure anti-symmetric and ⌅0+,0
c is the pure symmetric state. Indeed,

two states are observed, one at ⇠2468 MeV and the other ⇠2577 GeV. The latter decays
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~0.39N.M.

~0.54N.M. ~—1.46N.M.

radiatively to the former. Whether these observed two states (mass eigenstates) are the
pure anti-symmetric and symmetric states (flavour eigenstate) is not known though it
can o↵er an excellent test of the heavy quark limit. In the following, we show that the
magnetic moment measurement, which are the most sensitive to the flavour symmetry of
the constituent quarks, can be used to answer this question.

Let us compute the magnetic moment of another sextet (spin 1/2, symmetric) charmed
baryon ⌅0+,0

c :

µ⌅0+
c

= �1

3
µc +

2

3
µu +

2

3
µs, µ⌅00

c
= �1

3
µc +

2

3
µd +

2

3
µs (15)

which leads to µ⌅0+
c

= µ⌃+
c
, µ⌅00

c
= µ⌃0

c
at the SU(3) limit. The theoretical uncertainty

might be larger than the case of ⌃0,+
c due to SU(3) however, we would still expect the

magnetic moment of the ⌅00
c to have an opposite sign comparing to the ones of ⌅0

c . This
result implies that the magnetic moment measurements are very sensitive to resolve the
deviation between the flavour and the mass eigenstate of ⌅c’s. In particular, the equality
of the magnetic moment of ⌅+,0

c and ⇤c in Eq. (13) does not depend on the quark masses
and the most precise test can be performed. Thus, we will investigate in the following
section, this equality in more detail.

3.2 Magnetic moment beyond the quark model

There are various models to compute the magnetic moment beyond the quark model.
For example, the so-called Heavy Hadron Chiral Perturbation Theory (HHCPT) is devel-
oped [1, 2, 3, 4], which combine the heavy quark e↵ective theory and the chiral perturbation
theory of light hadrons. It allows to improve theoretical prediction in a systematic manner.

The next to leading order Lagrangian for the magnetic moment of triplet and sextet
baryons have been given in [5, 6]. At the order O(1/mQ) (mQ is the heavy quark mass),
we have two extra contributions. First, it is the heavy quark magnetic moment, i.e. the
interaction of the photons and the heavy quark constituent inside of the hadrons, which
also induces M1 transition. This term induces the contribution of the quark model. The
second contribution is the photon interacting with the light brown mock inside of the heavy
hadrons. However, the anti-symmetric baryons (⇤c,⌅

+,0
c ), whose light degree of freedom is

spinless, do not receive any contribution from this interaction as photon can not interact
with spinless component. As a result, even at this order, the quark model limit results given
in the previous section hold. The lack of contributions from light degree of freedom seems
to be generic and theoretical predictions using di↵erent models show that the magnetic
moment of ⇤c,⌅

+,0
c is close to the one predicted by the quark model, thus the relation

Eq. 13 still holds (see e.g. [11]).
In [8] and [7], further corrections are discussed. The reference [8] discusses the so-

called spin-symmetry breaking e↵ect, which typically induces the ⌃⇤
c �⌃c. mass splitting.

It comes form a loop diagram with ⌃(⇤)
c and ⇡,K in the loop. This contribution leads to

8

@SU(3) limit  
µΣc=µΞc’

If heavy quark limit is correct and Ξc (Ξc’) state is purely anti-symmetric 
(symmetric) state, we would observe  

µΛc=µΞc0≫µΞc0’

Corrections to the relation 
Savage et al PLB326 (’94) 
Banuls et al PRD61 (‘00)



NEW ANGULAR OBSERVABLES FOR 
MEASURING THE ΛC POLARISATION 



• The angular distribution of the Λc decay carries information of 
polarisation however, it can not trivial to separate it form the so-
called asymmetry parameter α.
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Issue of measuring the Λc polarisation

polarisationweak parameter



• Λc→Λπ→pππ decay  

• In this case where the first and the second decays are weak decays 
(both include parity violation), the angular dependence together with 
the information of 𝜶2=0.642±0.013 allows to determine 𝝃 and 𝜶1 
separately.   

• Problem: the decay rate is very small. 
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The case of ⇤c ! ⇤⇡ followed by ⇤ ! p⇡

Let us start with computing the first decay chain ⇤c ! ⇤⇡ The parity violating interaction is induced by a weak
interaction in the form

M�⇤c ,�⇤ = u⇤(p⇤,�⇤)(A�B�5)u⇤c(p⇤c ,�⇤c) (20)

where p⇤c,⇤ is the 4 momentum and the constants A and B represent parity conserving and violating contributions,
respectively. The helicity �⇤c,⇤ is the projection of the spin in the momentum direction. We work in the rest frame of
⇤c whose projection of spin coincides with z axis. Then, we define the direction of ⇤ with polar angle ✓ and azimuthal
angle �, such that it corresponds to the angle ✓ in Eq. (18). As a result, the total amplitude can be expressed as

|M |
2 =

1 + ⇠

2

�
|M++|

2 + |M+�|
2
�
+

1� ⇠

2

�
|M�+|

2 + |M��|
2
�

/
�
|X1|

2 + |X2|
2
�
+ ⇠

�
|X1|

2
� |X2|

2
�
cos ✓ (21)

where

X1,2 = (A�B)
q

E⇤ ⌥ |~pp|+ (A+B)
q

E⇤ ± |~pp| (22)

Thus, the the asymmetry parameter ↵ is given by

↵ =
|X1|

2
� |X2|

2

|X1|
2 + |X2|

2

=
2Re(AB

⇤)|~p⇤
(E⇤ +m⇤)|A|2 + (E⇤ �m⇤)|B|2

(23)

with E⇤ and ~p⇤ being the energy and three-momentum of the final state ⇤ in the rest frame of ⇤c.
We can see, indeed ↵ is non-zero only when there is parity violating contributions (the B term). In this particular

process, the parity violating interaction produces the final states ⇤⇡ in P-wave, which decreases as the final state
momentum, |~pf |, decreases. Thus, ↵ ! 0 at the non-relativistic limit. The ↵ parameter depends on the four-

momentum of the final state in general but at the relativistic limit it becomes constant ↵ = 2Re(AB
⇤)

|A|2+|B|2 . The A and B

parameters depends on the final states and the the theoretical estimates are model dependent.
Up to now, we find the same result as Eq. (18), where we can not separately measure the ⇤c polarization from ↵.

Thus, we next consider the decay of the subsequent decay ⇤ ! p⇡. The transition amplitude can be written similarly
as the ⇤c decay:

M�⇤,�p = up(pp,�p)(a� b�5)u⇤(p⇤,�⇤) (24)

Then our di↵erential decay rate can be written as

dN

d cos ✓
= 4m2

⇤N1N2(1 + ↵1↵2 cos ✓ � ⇠(↵1 � ↵2 cos ✓)) (25)

= 4m2
⇤N1N2(1� ⇠↵1 + ↵2(↵1 + ⇠) cos ✓) (26)

where

N1 = (E⇤c +m⇤c)|A|
2 + (E⇤c �m⇤c)|B|

2 (27)

N2 = (Ep +mp)|a|
2 + (Ep �mp)|b|

2 (28)

↵1 =
2Re(AB

⇤)|~p⇤c |

N1
(29)

↵2 =
2Re(ab⇤)|~pp|

N2
(30)

Note that now we are working in the rest frame of ⇤ and the ⇤c spin axis and momentum direction is chosen to
be the same. The angle ✓ is the angle between ⇤c and p. The second line of Eq. (25) shows that there are two
observables, coe�cients of non-angular dependent part, 1 � ⇠↵1, and of cos ✓ part, ↵2(↵1 + ⇠). Then using the
very well measured value of ↵2 = 0.642 ± 0.013 [37], we could achieve to obtain ↵1 and ⇠ separately. So far ↵1 is
measured with less precision, ↵1 = �0.91 ± 0.15 [37]. Measuring them with much higher statistics data of LHCb
will be very interesting for future. In particular, having the result of ⇤b polarization measurement at LHCb [38],

A,B: form factor for Λc→Λπdecay   
a,b: form factor for Λ→pπdecay  

parity violating

Polarisation measurement in weak-weak decay



Λc→(K*p, Δ++K,𝝠π)→pKπ decay  
• It was first studied by the Fermilab E791 experiment.  
• E791: amplitude analysis including 3 resonances, using the helicity 

amplitude method. 
• Successfully measured the polarisation! 
• This study was extended by including many more resonances by 

LHCb (see talks tomorrow)
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of Ref. [10]. The primed angles refer to the direction of one of the resonance’s
daughters in the resonance’s rest frame. Note that the decay amplitudes for
each resonance may have contributions to each of the four terms in Equation
1.
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Fig. 1. Definition of angles using Λ+
c → pK

∗0
→ pK−π+ as an example. In both

figures the Λ+
c is at rest. In the first figure, which defines (θp,φp), the x-axis is along

the direction of motion of the Λ+
c in the lab frame and the z-axis is the polarization

axis, normal to the plane of production. In the second figure we define φKπ as the

angle between the plane containing theK
∗0

decay products and the plane containing
the proton and the x-axis.

Each event in the final data sample is described by five kinematic variables
of interest (two two-body masses and the decay angles θp, φp, and φKπ as
defined in Figure 1) which are determined after the pKπ reconstructed mass
is constrained to the Λc mass. We chose the quantization axis (the z-axis in
the Λc rest frame) to be normal to the Λc production plane (as defined by
p̂beam × p̂Λc

, where p̂beam is the beam direction and p̂Λc
is the Λc production

direction in the lab frame). The x-axis in the Λc rest frame is chosen to be the
direction of the Λc in the lab frame.

3 Experiment E791 and Data Selection

We analyze data from Fermilab fixed-target experiment E791, which ran dur-
ing 1991 and 1992. The data were recorded from 500 GeV/c π− beam inter-
actions in five thin target foils (one platinum, four diamond) whose centers
were separated by about 1.53 cm. The detector, described elsewhere in more
detail[11,12], was a large-acceptance, forward, two-magnet spectrometer. The
key components for this study were eight planes of multiwire proportional
chambers, and six planes of silicon microstrip detectors (SMD) before the tar-
get for beam tracking, a 17-plane SMD system and 35 drift chamber planes
downstream of the target for track and vertex reconstruction, and two multi-
cell threshold Čerenkov counters for charged particle identification.

5

Polarisation measurement in weak-strong decay
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Strong-Weak decay in another frame…

Λc→(K*p, Δ++K,𝝠π)→pKπ decay  
• Choice of frame : common for 3 resonances 
• Amplitude computation by Feynman diagram 
• Only intermediate 3 resonances (3/2+, 3/2-, 1-), to start 

z(’)

x’

x @Λc rest frame

p
π

pol. axis
Σ

θ

ϕ

K

y’

y
⊗

Figure 1: The pK⇡ decay plane and the p � ⌃ plane (⌃ is the polarisation axis, which

we may choose to be perpendicular to the beam and the ⇤c momentum in the laboratory

frame) in the rest frame of ⇤c.

3

We use Λc rest frame with 
• x’-y’-z’: the pKπ decay plane 
• x-z: p-Σ plane 
• z(‘): proton direction 

Brief Article

E.K.

1 Kinematical variables

We first define the 4 momentum of the final sates as follow:

⇤c ! p(p1)K(p2)⇡(p3) (1)

We work on the rest frame of ⇤c and the proton momentum to be on the the z axis:

~ez =
~p1
|~p1|

(2)

Next, we define the quantisatoin axis of the ⇤c polarisation,
~⌃, to be perpendicular to the

beam and the ⇤c momentum in the laboratory frame, i.e. ~⌃ = ~̂pbeam ⇥ ~̂p⇤c , and then, the

proton-projection axis plane to be on the x� z plane:

~ey =
~p1 ⇥ ~⌃

|~p1 ⇥ ~⌃|
(3)

Finally, we define the proton-pion plane to be the x0 � z0 plane, where z0 axis is shared

with the z axis (see Fig. 1):

~ey0 =
~p1 ⇥ ~p3
|~p1 ⇥ ~p3|

(4)

We define the angle between proton and polarisation axis to be � (sin� > 0)

cos� =
~p1 · ~⌃
|~p1 · ~⌃|

(5)

and the angle between these two planes to be ✓

cos ✓ =
~x · ~x0

|~x · ~x0| (6)

2

E.K. A. Korchin, V. Kovalchuk, A. Lukianchuk 

Different from the helicity 
amplitude, the angular 

dependence is clearer, which 
allows us to perform a more 
advanced sensitivity study! 
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• Our final result can be written as :  

2.2 Spin summation

After spin summation of the proton, we obtain

|M|2 = Tr
h⇣ X

R=⇤0,�++,K⇤

A†
R

⌘
(/p+mp)

⇣ X

R=⇤0,�++,K⇤

AR

⌘
P�⇤c

i
(44)

where the projection operator is defined as

P�⇤c
= u�⇤c

(Q)u�⇤c
(Q) (45)

=
1

2
(/Q+m�⇤c

)(1 + �5/a)

3 Results

3.1 The individual resonance contributions

All three resonance contributions turn out to have the same angular distribution (with
di↵erent angular coe�cients)

d�

ds12d13d cos ✓d�
= a(s12, s13)+⇠

⇣
b0(s12, s13) cos ✓ + b1(s12, s13) sin ✓ cos�+ b2(s12, s13) sin ✓ sin�| {z }

⌘b(s12,s13,cos ✓,�)

⌘

(46)
The coe�cients a, bi are the functions of Dalitz variables s12, s13 as well as the 6 hadronic

form factors, A,B, · · · , F . The goal is to determine these hadronic parameters and ⇠
simultaneously from the experimental measurements of the 4 Dalitz plots a, bi. To do so,
we first write the normalised PDF,

f̂(~v) =
a(s12, s13) + ⇠b(s12, s13, cos ✓,�)

N
(47)

where the normalisation constant N is (the b term disappears after integration of the
angles):

N =

Z
a(s12, s13) ds12ds13 (48)

6

2.2 Spin summation

After spin summation of the proton, we obtain

|M|2 = Tr
h⇣ X

R=⇤0,�++,K⇤

A†
R

⌘
(/p+mp)

⇣ X

R=⇤0,�++,K⇤

AR

⌘
P�⇤c

i
(44)

where the projection operator is defined as

P�⇤c
= u�⇤c
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(Q) (45)
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1

2
(/Q+m�⇤c

)(1 + �5/a)

3 Results

3.1 The individual resonance contributions

All three resonance contributions turn out to have the same angular distribution (with
di↵erent angular coe�cients)

d�

ds12d13d cos ✓d�
= a(s12, s13)+⇠

⇣
b0(s12, s13) cos ✓ + b1(s12, s13) sin ✓ cos�+ b2(s12, s13) sin ✓ sin�| {z }

⌘b(s12,s13,cos ✓,�)

⌘

(46)
The coe�cients a, bi are the functions of Dalitz variables s12, s13 as well as the 6 hadronic

form factors, A,B, · · · , F . The goal is to determine these hadronic parameters and ⇠
simultaneously from the experimental measurements of the 4 Dalitz plots a, bi. To do so,
we first write the normalised PDF,

f̂(~v) =
a(s12, s13) + ⇠b(s12, s13, cos ✓,�)

N
(47)

where the normalisation constant N is (the b term disappears after integration of the
angles):

N =

Z
a(s12, s13) ds12ds13 (48)

6

a : Dalitz distribution (parity even) 
b0 : Equivalent to α (parity odd) 
b2 : triple product (CP or T odd ?)

‣ a contains |A|2, |B|2, … |Fi|2 and interferences, BC, AD, BE1,2, AF1,2….  

‣ b0 contains interferences, AB, CD, E1,2F1,2, AC, BD, AE1,2, BF1,2….  

‣ b2 contains imaginary part

A (𝒫), B(𝒫) 
C (𝒫), D(𝒫) 

E1,2 (𝒫), F1,2(𝒫) 

a, b0, b1, b2 are written by the form factors, A, B, C, D, Ei, Fi and  
the Breit-Wigner of each resonance.  

E.K. A. Korchin, V. Kovalchuk, A. Lukianchuk 

Strong-Weak decay in another frame…
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• Our final result can be written as :  

2.2 Spin summation

After spin summation of the proton, we obtain

|M|2 = Tr
h⇣ X

R=⇤0,�++,K⇤

A†
R

⌘
(/p+mp)

⇣ X

R=⇤0,�++,K⇤

AR

⌘
P�⇤c

i
(44)

where the projection operator is defined as

P�⇤c
= u�⇤c

(Q)u�⇤c
(Q) (45)

=
1

2
(/Q+m�⇤c

)(1 + �5/a)

3 Results

3.1 The individual resonance contributions

All three resonance contributions turn out to have the same angular distribution (with
di↵erent angular coe�cients)

d�

ds12d13d cos ✓d�
= a(s12, s13)+⇠

⇣
b0(s12, s13) cos ✓ + b1(s12, s13) sin ✓ cos�+ b2(s12, s13) sin ✓ sin�| {z }

⌘b(s12,s13,cos ✓,�)

⌘

(46)
The coe�cients a, bi are the functions of Dalitz variables s12, s13 as well as the 6 hadronic

form factors, A,B, · · · , F . The goal is to determine these hadronic parameters and ⇠
simultaneously from the experimental measurements of the 4 Dalitz plots a, bi. To do so,
we first write the normalised PDF,

f̂(~v) =
a(s12, s13) + ⇠b(s12, s13, cos ✓,�)

N
(47)

where the normalisation constant N is (the b term disappears after integration of the
angles):

N =

Z
a(s12, s13) ds12ds13 (48)

6
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After spin summation of the proton, we obtain

|M|2 = Tr
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⌘
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P�⇤c
= u�⇤c

(Q)u�⇤c
(Q) (45)

=
1

2
(/Q+m�⇤c

)(1 + �5/a)

3 Results

3.1 The individual resonance contributions

All three resonance contributions turn out to have the same angular distribution (with
di↵erent angular coe�cients)

d�

ds12d13d cos ✓d�
= a(s12, s13)+⇠

⇣
b0(s12, s13) cos ✓ + b1(s12, s13) sin ✓ cos�+ b2(s12, s13) sin ✓ sin�| {z }

⌘b(s12,s13,cos ✓,�)

⌘

(46)
The coe�cients a, bi are the functions of Dalitz variables s12, s13 as well as the 6 hadronic

form factors, A,B, · · · , F . The goal is to determine these hadronic parameters and ⇠
simultaneously from the experimental measurements of the 4 Dalitz plots a, bi. To do so,
we first write the normalised PDF,

f̂(~v) =
a(s12, s13) + ⇠b(s12, s13, cos ✓,�)

N
(47)

where the normalisation constant N is (the b term disappears after integration of the
angles):

N =

Z
a(s12, s13) ds12ds13 (48)

6

a : Dalitz distribution (parity even) 
b0 : Equivalent to α (parity odd) 
b2 : triple product (CP or T odd ?)

‣ a contains |A|2, |B|2, … |Fi|2 and interferences, BC, AD, BE1,2, AF1,2….  

‣ b0 contains interferences, AB, CD, E1,2F1,2, AC, BD, AE1,2, BF1,2….  

‣ b2 contains imaginary part

A (𝒫), B(𝒫) 
C (𝒫), D(𝒫) 

E1,2 (𝒫), F1,2(𝒫) 

a, b0, b1, b2 are written by the form factors, A, B, C, D, Ei, Fi and  
the Breit-Wigner of each resonance.  

E.K. A. Korchin, V. Kovalchuk, A. Lukianchuk 

Strong-Weak decay in another frame…

We perform the simultaneous fit of form factor 
(A, B…Fi) and polarisation ξ using 4 dimensional 
kinematics (s12, s13, θ ϕ). 
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The sensitivity study: proof of concept

Step 1) Obtain an example MC data from LHCb (with only 3 resonances) 
Step 2) Construct our model (i.e. fitting our form factors using the MC Dalitz plot) 
Step 3) Perform the simultaneous fit using events generated using our model 

 We use the “omega” method (c.f. Gampola, tau polarisation measurement, ILC top spin measurement…).

E.K. F. Callet
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The sensitivity study: proof of concept

Step 1) Obtain an example MC data from LHCb (with only 3 resonances) 
Step 2) Construct our model (i.e. fitting our form factors using the MC Dalitz plot) 
Step 3) Perform the simultaneous fit using events generated using our model 

 We use the “omega” method (c.f. Gampola, tau polarisation measurement, ILC top spin measurement…).

P1:  p 
P2: K 
P3: pi
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E.K. F. Callet
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The sensitivity study: proof of concept

w distribution for xi=±0.9

Fit result for ξ (for ξ=0.9) 
ξ=0.890±0.009 (for 200k event) 
ξ=0.882±0.028 (for 20k event)

Prelim
inary result of fit

ΔΛ

K*

w^2 weighted Dalitz plot on m12-m23 with xi=0.9 

The w^2 distribution is approximately                   
1/sigma_xi^2 distribution (sigma_xi 
=error on xi), i.e.  the plot shows the 

region of high sensitivity

E.K. F. Callet



23

Conclusions

• The charm magnetic moment determination with bent-crystal 
requires a measurement of the 𝝠c polarisation. Last few years, there 
have been impressive progresses on the 𝝠c polarisation 
measurement at LHCb.  

• Charmonium radiative decay can indirectly provide an estimate 
μΛc≈0.48±0.04 n.m.. which is slightly higher than the theoretical 
predictions (~0.37-0.42 n.m.).  

• The MDM measurement requires the simultaneous determination of 
the Λc  polarisation and the “asymmetry parameter (i.e. form 
factors)”. 

• We propose a new framework to perform the sensitivity study. Our 
preliminary result shows that the polarisation can be measured at 3 
(1)% precision for 20k (200k) Λc→pKπ events.  The next step is to 
include more resonances. 
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PROPOSED EXPERIMENT

 A. Fomin               Measuring the EMDM of Λc.   Performance assessment of layouts in IR3 and IR8 of the LHC

MDM and EDM of charmed baryons:  Fixed target at the LHC

10

Targ
Crys 1

Cry
s 2

De
tec

torCollimator Absorber

Halo

LHC Beam1

The first Crystal deflects protons from 
the LHC beam halo onto the Target

In the Target protons are 
converted to polarised Λc

In the Detector the final polarisation 
 of Λc is reconstructed from 

the distribution of decay products 

The second Crystal deflects Λc 
with specific initial polarisation. 

Λc spin precession 
in the electric field of crystal planes 

is proportional to MDM (or EDM)

• L.	Burmistrov	et	al.,	CERN-SPSC-2016-030,	CERN,	Geneva	Switzerland,	June	2016	[SPSC-EOI-012].	

• A.	Stocchi,	W.	Scandale,	talks	at	Physics	Beyond	Collider	Workshop,	CERN,	Geneva	Switzerland,	6–7	September	2016.



• In quark model, magnetic moment of proton is a sum of the 
magnetic moment of the constituent quark (up-up-down) with fully 
symmetric spin configuration.  

where q is the constituent quark and σ is the spin operator 

• Then the magnetic moment of proton is computed as

M =
X

q

MqParticles and Symmetries CHAPTER 5. QUARKS AND HADRONS

One may write this wavefunction more explicitly with the various terms multiplied out,

 proton
spin+flavor =

⇥
2 u " u " d # � u # u " d " � u " u # d "

+ 2 u " d # u " � u # d " u " � u " d " u #
+ 2 d # u " u " � d " u # u " � d " u " u #

⇤
/
p

18 , (5.5.9)

(where we have also normalized the result). You can, and should, check that this does satisfy the
required condition of symmetry under interchange of spins and flavors of any pair of quarks. Similar
constructions can be performed for all the other members of the spin 1/2 baryon octet.

One notable feature of the set of octet baryons, shown in Table 5.5 , is the presence of two di↵erent
baryons whose quark content is uds, specifically the ⇤ and the ⌃0. This is not inconsistent. When
three distinct flavors are involved, instead of just two, there are more possibilities for constructing
a spin+flavor wavefunction with the required symmetry. A careful examination (left as a problem)
shows that there are two independent possibilities, completely consistent with the observed list of
spin 1/2 baryons.

The mass values in Table 5.5 show that for spin 1/2 baryons, just as for spin 3/2 baryons, baryons
with strange quarks are heavier than those with only up and down quarks; each substitution of a
strange quark for an up or down raises the energy of the baryon by roughly 120–170 MeV.

5.6 Baryon number

Baryon number, denoted B, is defined as the total number of baryons minus the number of an-
tibaryons, similar to the definition (4.7.1) of lepton number L. Since baryons are bound states of
three quarks, and antibaryons are bound states of three antiquarks, baryon number is the same as
the number of quarks minus antiquarks, up to a factor of three,

B = (# baryons)� (# antibaryons) = 1
3

⇥
(# quarks)� (# antiquarks)

⇤
. (5.6.1)

All known interactions conserve baryon number.9 High energy scattering processes can change the
number of baryons, and the number of antibaryons, but not the net baryon number. For example, in
proton-proton scattering, the reaction p+p ! p+p+n+ n̄ can occur, but not p+p ! p+p+n+n.

5.7 Hadronic decays

Turning to the decays of the various hadrons listed in Tables 5.3–5.6 , it is remarkable how much
can be explained using a basic understanding of the quark content of the di↵erent hadrons together
with considerations of energy and momentum conservation. As an example, consider the baryons in
the spin 3/2 decuplet. The rest energy of the � baryons is larger than that of a nucleon by nearly
300 MeV. This is more than the ⇡ 140 MeV rest energy of pions, which are the lightest mesons.
Consequently, a � baryon can decay to a nucleon plus a pion via strong interactions, which do not
change the number of quarks minus antiquarks of each quark flavor. (Specifically, a �++ can decay

9This is not quite true. As with lepton number, the current theory of weak interactions predicts that there are
processes which can change baryon number (while conserving B�L). The rate of these processes is so small that baryon
number violation is (so far) completely unobservable.

9
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Mq = µ
eq
e
�q

µp = h�P |Mu +Mu +Md|�P i

=
1

18
(4⇥ 3(2eu � ed) + 6⇥ ed)µ

µ=|e|/2Mq

Using the constituent quark mass 
mq=1/3 mP, we find gP=1.86!

Similar to the previous 
result but now, the 

denominator is not proton 
mass but quark mass!

　MAGNETIC MOMENT OF ELEMENTARY PARTICLES
QUARK

=
gq
2

|e|
2mq
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PREDICTING ΛC MAGNETIC MOMENT WITH BESIII RESULT
arXiv: 1701.01197 (also see CLEO 0910.0046)6

TABLE I. Fit results for aJ
2,3 and bJ2,3 for the process of ψ(3686) → γ1χc1,2 → γ1γ2J/ψ; the first uncertainty is statistical, and the second is

systematic. The ρJa2,3b2,3 are the correlation coefficients between aJ
2,3 and bJ2,3.

χc1
a1
2 = −0.0740 ± 0.0033 ± 0.0034, b12 = 0.0229 ± 0.0039 ± 0.0027

ρ1a2b2 = 0.133

χc2

a2
2 = −0.120± 0.013 ± 0.004, b22 = 0.017 ± 0.008 ± 0.002

a2
3 = −0.013± 0.009 ± 0.004, b23 = −0.014 ± 0.007 ± 0.004

ρ2a2b2 = −0.605, ρ2a2a3
= 0.733, ρ2a2b3 = −0.095

ρ2a3b2 = −0.422, ρ2b2b3 = 0.384, ρ2a3b3 = −0.024

for χc1 and χ2/ndf = 5985.2/5840 = 1.02 for χc2, demon-
strating that the fit gives an excellent representation of the
data.

V. MEASUREMENT OF
B(ψ(3686) → γχCJ → γγJ/ψ) AND SEARCH FOR THE

PROCESS ηc(2S) → γJ/ψ

With the selected e+e− → γ1γ2J/ψ candidates, we mea-
sure the product branching fractions of the decay ψ(3686) →
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Bhabha events [e+e− → γISR/FSRe

+e−, where γISR/FSR

denotes the initial-/final-state radiative (ISR/FSR) photon(s)].
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requirement of cos θe+ < 0.3 and cos θe− > −0.3. These re-
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γISR/FSRµ

+µ−), a three-constraint (3C) kinematic fit is ap-
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fit does not change the peak position of the invariant mass for
signals and the corresponding resolutions are similar to those
with the 4C kinematic fit.
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non-J/ψ backgrounds, is only 0.3% of that from ψ(3686),
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MC samples of these decays are generated to determine

their distributions and contributions. With the published
branching fractions [17], which have been measured precisely
by different experiments, the estimated number of events
for ψ(3686) → π0π0J/ψ,π0J/ψ and the efficiency for
ψ(3686) → γγJ/ψ are obtained as summarized in Table II.
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&+&−γFSR(γFSR) (l = e/µ). To precisely describe the shape,
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of event yields between the two parts (N!+!−γγ/N!+!−γ) is
obtained by a MC simulation. For the background from ra-
diative Bhabha/dimuon processes, the ratio N!+!−γγ/N!+!−γ

is obtained by a fit to a 928 pb−1 data sample taken at a
center-of-mass energy of 3.773 GeV. After the event selection
imposed on the data, the remaining events are mainly radiative
Bhabha/dimuon events, and a small contribution originates
from ψ(3770) → γχcJ and decays of ψ(3686) produced in
the ISR process. In the fit, the shapes of the M3C(γ2&+&−)
distributions for the Bhabha/dimuon processes are determined
from a ψ(3686) → &+&−γFSR(γFSR) MC sample by shifting
the M3C(γ2&+&−) from ψ(3686) to ψ(3770) according to
the formula m′ = a ∗ (m − m0) + m0, where m0 = 3.097
GeV/c2 is the mass threshold of γJ/ψ, and the coefficient
a = (3.773−m0)/(3.686−m0) = 1.15 shifts the events from
3.686 to 3.773 GeV. The shapes of the backgrounds are based
on MC simulation, while the amplitude of each component
is set as a free parameter. Thus, the cross section weighted
ratio of the backgrounds e+e− → &+&−γISR/FSR(γISR/FSR)
and ψ(3686) → &+&−γFSR(γFSR) for the two parts is
Ne+e−γγ/Ne+e−γ = 1.203 ± 0.081 (Nµ+µ−γγ/Nµ+µ−γ =
0.689 ± 0.044) for the e+e− (µ+µ−) channel. The quan-
titative results and shapes will be used in the simultaneous
fit.

V.B. Simultaneous fit to M3C(γ2%
+%−)

Figure 3 shows the M3C(γ2&+&−) distributions for se-
lected candidates of the two channels of J/ψ → e+e− and
J/ψ → µ+µ−, where clear signals of χc0,1,2 can be ob-
served. No evident ηc(2S) signature is found. A simultane-
ous unbinned maximum likelihood fit is performed to obtain

theory
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mass and width of χc0,1,2 with ±1σ of the world average val-
ues [17] for the signal MC shape. To estimate the uncertainty
due to the background of ψ(3686) → π0J/ψ,π0π0J/ψ and
the ratio of N!+!−γγ/N!+!−γ for Bhabha and dimuon back-
grounds, alternative fits are performed in which the numbers
of expected background events (see Table II) and the ratio of
Nγγ!+!−/Nγ!+!− are varied by ±1σ. For χc0,1,2, the largest
differences in the signal yields from the nominal values are
taken as the systematic uncertainty. For the ηc(2S) case, to
be conservative, the one corresponding to the largest upper
limit is taken as the final result. All systematic uncertainties
of the different sources are summarized in Table IV. The total
systematic uncertainties are obtained by adding the individ-
ual ones in quadrature, thereby assuming all these sources are
independent.

TABLE IV. Summary of all systematic uncertainties for the branch-
ing fractions measurement.

Source χc0 (%) χc1 (%) χc2 (%) ηc(2S) (%)

Nψ(3686) 0.9 0.9 0.9 0.9
Tracking efficiency 0.2 0.2 0.2 0.2
Photon detection 2.0 2.0 2.0 2.0
Kinematic fit 0.6 0.5 0.5 0.4
J/ψ mass window 0.6 0.6 0.6 0.6
Other selection 2.4 2.2 2.3 2.4
B(J/ψ → e+e−/µ+µ−) 0.6 0.6 0.6 0.6
Interference 0.7 - - -
Signal shape 0.7 0.9 1.0 -
Background 0.1 0.1 0.1 -
Total 3.6 3.4 3.5 3.4

VII. RESULT AND SUMMARY

Based on 106 million ψ(3686) decays, we measure the
higher-order multipole amplitudes for the decays ψ(3686) →
γ1χc1,2 → γ1γ2J/ψ channels. The statistical significance of
nonpure E1 transition is 24.3σ and 13.4σ for the χc1 and χc2

channels, respectively. The normalized M2 contribution for
χc1,2 and the normalized E3 contributions for χc2 are listed in
Table I. Figure 4 shows a comparison of our results with pre-
viously published measurements and with theoretical predic-
tions with mc = 1.5 GeV/c2 and κ = 0. The results are con-
sistent with and more precise than those obtained by CLEO-
c [5] and confirm theoretical predictions [1, 2]. The M2 con-
tributions for ψ(3686) → γ1χc1 (b12), χc1 → γ2J/ψ (a12),
and χc2 → γ2J/ψ (a22) are found to be significantly nonzero.
The ratios of M2 contributions of χc1 to χc2 are independent
of the mass mc and the anomalous magnetic moment κ of the
charm quark at leading order in Eγ/mc. They are determined
to be

b12/b
2
2 = 1.35± 0.72,

a12/a
2
2 = 0.617± 0.083.

(8)

The corresponding theory predictions are (b12/b
2
2)th =

1.000± 0.015 and (a12/a
2
2)th = 0.676± 0.071 [5]. By using

the most precise measurement of the M2 amplitudes a12 and
by taking mc = 1.5 ± 0.3 GeV/c2, the anomalous magnetic
moment κ can be obtained from Eq. (1),

1 + κ =−
4mc

Eγ2 [χc1 → γ2J/ψ]
a12

=1.140± 0.051± 0.053± 0.229,
(9)

where the first uncertainty is statistical, the second uncertainty
is systematic, and the third uncertainty is from mc = 1.5 ±
0.3 GeV/c2.

Based on the multipole analysis, we measure the product
branching fractions for ψ(3686) → γχc0,1,2 → γγJ/ψ to be
(15.8 ± 0.3 ± 0.6) × 10−4, (351.8 ± 1.0 ± 12.0) × 10−4,
and (199.6 ± 0.8 ± 7.0) × 10−4, respectively, where the
first uncertainty is statistical and the second is systematic. In
Fig. 5, the product branching fractions are compared to pre-
vious results from BESIII [18], CLEO [36], and the world
average [17]. The world average refers to the product of the
average branching fraction of ψ(3686) → γ1χcJ and the av-
erage branching fraction of χcJ → γ2J/ψ, where the results
of BESIII and CLEO are not included in the world average
values. For all χcJ , our results exceed the precision of the
previous measurements. Compared to the previous BESIII re-
sult, the results are consistent within 1σ, but we have consid-
ered the higher-order multipole amplitudes and improved the
systematic uncertainty due to a more precise measurement of
the total number of produced ψ(3686) [19]. In addition, our
measurement for the χc0 channel is 3σ larger than the result
from CLEO and 3σ larger than the world average value, while
for the χc1,2, our results are consistent with previous mea-
surements. There are theoretical predictions for the branch-
ing fraction ψ(3686) → γχc0,1,2 by several different mod-
els [14–16] without consideration of higher-order multipole
amplitudes, which agree with each other poorly. The results
in this measurement will provide a guidance for the theoretical
calculations.

We also search for the decay ηc(2S) → γJ/ψ through
ψ(3686) → γηc(2S). No statistically significant signal is
observed. Considering the systematic uncertainty, an upper
limit on the product branching fraction is determined to be
B(ψ(3686)→ γηc(2S))×B(ηc(2S) → γJ/ψ) < 9.7×10−6

at the 90% C.L., where the systematic uncertainty is incor-
porated by a factor 1/(1 − σsyst.) for conservative. Com-
bining the result of B(ψ(3686) → γηc(2S)) obtained by
BESIII [37], the upper limit of the branching fraction for
ηc(2S) → γJ/ψ is B(ηc(2S) → γJ/ψ) < 0.044 at the 90%
C.L. Using the width of ηc(2S) of 11.3+3.2

−2.9 MeV/c2 [17], our
upper limit implies a partial width of Γ(ηc(2S) → γJ/ψ) <
0.50 MeV/c2. Although this result agrees with the prediction
of LQCD (0.0013 MeV/c2) [38], it clearly has a very limited
sensitivity to rigorously test the theory.
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Extracting anomalous magnetic moment
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ΞC1+, ΞC2+???
QUESTION OF TWO ΞC STATES
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○: the anti-symmetric 1/2 (Λc,Ξc1+,Ξc10) 
●: the symmetric 1/2 (Σc0,Ξc2+,Ξc20) 
■: the symmetric 3/2 (Σc0*,Ξc+*,Ξc0*)

At heavy quark limit : 

But this has never been confirmed…  
The observed state can be a mixture of 
Ξc1 and Ξc2. How can we distinguish?

We show below that 
magnetic moment, which measures directly 

the quark spin-configuration, is the most 
powerful tool to distinguish different 

charmed baryon states!



• In the previous work, we had only 3 resonances:  
Λ’ (3/2-)Δ++(3/2+),K*(1-)   

• Now, we try to include following resonances (Model 6):  
Λ1/2-(1405), Λ3/2-(1520), Λ1/2+(1600), Λ1/2-(1670), Λ1/2+???(2000) 

Δ3/2+(1232), Δ3/2+(1600), Δ1/2-(1620), Δ3/2-(1700) 
κ0+(700), K*1-(892), K*00+(1430)   

• We name these particles as 1~n and then, the parity even and odd 
form factors are named as Ai and Bi (i=1~(n+1)*).  

• So on total (n+1)x2 (or (n+1)x4 if they are imaginary) parameters to 
fit.  

• a0 (parity even) :  function of AixAj and BixBj (i,j=1~n+1). This means 
we need 20, 58, 242,1454 decompositions for n=3, 4, 5, 6 resonances.    

Project to include more resonances
E.K. E. Niel, T. Kapoor

* K* has 4 form factors


