# Avalanche Diodes Array – 5D (ADA\_5D)

P.S. Marrocchesi<sup>(a)</sup>, P. Brogi<sup>(a)</sup>, G. Bigongiari<sup>(a)</sup>, M. Boscardin<sup>(f)</sup>, M. Centis Vignali<sup>(f)</sup>,

C. Checchia<sup>(a)</sup>, G. Collazuol<sup>(d)</sup>, T. Corradino<sup>(e)</sup>, G.F. Dalla Betta<sup>(e)</sup>, M. Feltri<sup>(d)</sup>,

S. Giroletti<sup>(c)</sup>, M. Grassi<sup>(c)</sup>, O.Hammad Ali<sup>(f)</sup>, P. Maestro<sup>(a)</sup>, M. Maghami Moghim<sup>(a)</sup>,

P. Malcovati<sup>(c)</sup>, M. Mattiazzi<sup>(d)</sup>, A. Messineo<sup>(b)</sup>, F. Morsani<sup>(b)</sup>, J. Minga<sup>(c)</sup>, L. Pancheri<sup>(e)</sup>,

F. Stolzi<sup>(a)</sup>, L. Ratti<sup>(c)</sup>, A. Taffelli<sup>(e)</sup>, C. Vacchi<sup>(c)</sup>

(a) Univ. di Siena & INFN Gruppo Collegato
(b) Univ. di Pisa & INFN Sezione di Pisa
(c) Univ. di Pavia & INFN Sezione di Pavia
(d) Univ. of Padova & INFN Sezione di Padova
(e) Univ. di Trento & TIFPA
(f) Fondazione Bruno Kessler (FBK – Trento)

Proposta di nuova iniziativa CSN5 (2022-2025)

P. S. Marrocchesi – 220701 - INFN sez. di Pisa

**CHARGE IDENTIFICATION** of cosmic-ray (CR) ions with charge  $1 \le Z \le 30$  with dE/dx  $\propto Z^2$  measurements in a **charge detector** (SCD) at the top of the instrument

Example of a typical space-borne CR experiment with a generic charge detector (silicon pixels, scintillator paddles/tiles, etc.)

**Backscattering (BS)** from the calorimeter generates fake hits in the charge detectors and in the tracker.

The tracker back estrapolates to the SCD with an impact point IP residual ~  $150 - 200 \mu m$ 

BS increases with energy and deteriorates the charge ID of individual CR elements.

ADA-5D concept: reject BS with a high resolution ToF measurement



#### Arrival time (ns) of BS from calorimeter on SCD: a GEANT4 simulation



- filled-green: back-scattered photons (interact in SCD  $\rightarrow$  ionizing secondaries  $\rightarrow$  fake hits;
- filled-blue: back-scattered neutrons;
- filled-orange: back-scattered electrons (depositing energy in the charge detector);
- filled-red: incident protons on the charge detector (generated at t=0);
- unfilled histogram: inclusive of all above.

#### Nota "storica" Matrix-CSN5-2005-7

All'epoca (~15 anni fa !) con rivelatori SILICON PAD (next slide), abbiamo misurato risoluzioni in carica fra 0.2 e 0.3 dal Boro (Z=5) fino al Fe (Z=26) al **GSI** con un fascio primario di <sup>64</sup>Ni (1.0–1.3 GeV/amu) su fragmentation target di Be. La risoluzione in carica per protoni (Z=1) era ~0.1



#### Nota "storica" Matrix-CSN5-2005-7

## **Silicon Pad Array**

- Pixel area: 1.125 × 1.125 cm<sup>2</sup>
- Thickness: 500 µm
- Matrix: 8 × 8 pixels
- Active area: 9.07 × 9.07 cm<sup>2</sup>
- TILE Full area: 9.47 × 9.47 cm<sup>2</sup>
  - Full depletion voltage: < 30V
  - Breakdown voltage: > 200V
  - Dark current per pixel: < ~ 1nA
  - Junction capacitance per pixel : ~ 25pF







#### Charge Identification with CHD and IMC



#### An example: CALET on the ISS



#### CHD – Charge Detector

- 2 layers x 14 plastic scintillating paddles
- single element charge ID from p to Fe and above (Z = 40)
- charge resolution ~0.1-0.3 e

#### IMC – Imaging Calorimeter

- Scifi + Tungsten absorbers: **3** X<sub>0</sub> at normal incidence
- 8 x 2 x 448 plastic scintillating fibers (1mm) readout individually
- Tracking (~0.1° angular resolution) + Shower imaging

#### TASC – Total Absorption Calorimeter 27 $X_{0,}$ 1.2 $\lambda_{I}$

- 6 x 2 x 16 lead tungstate (PbWO<sub>4</sub>) logs
- Energy resolution: ~2 % (>10GeV) for e ,  $\gamma$  ~30-35% for p, nuclei e/p separation: ~10^-5

Deviation from Z<sup>2</sup> response is corrected both in CHD and IMC using a core + halo ionization model (Voltz)

#### CALET is taking data aboard the ISS since 2015

### Spectra of cosmic-ray nuclei from C to Fe



37th ICRC 2021 - CALET - HIGHLIGHT TALK

Pier Simone Marrocchesi

#### An example: direct measurements of Fe and Ni fluxes with CALET on the ISS



CALET Nickel paper: Physical Review Letters 128, 131103 (2022)

CALET Iron paper: Physical Review Letters **126**, 241101 (2021)



## **ADA\_5D** Charge & Timing 5D detector: x,y,z, time, charge

VERY stringent requirements for a space experiment:

#### Charge measurement:

- very large dynamic range > 1000 MIP (for trans-iron elements DR ~ 1600 MIP)
- charge resolution for proton < 0.1 => 200-300 um sensors for primary ionization

#### Timing measurement:

- sub-ns resolution (e.g., for 10 - 20 cm flight path  $\rightarrow$  needs 100 ps resolution)

#### Space resolution and granularity:

- modest granularity (3mm x 3mm pixels) to cover large O(m<sup>2</sup>) sensitive area)
- an independent TRACKER is in charge of the fine spatial resolution

Power budget:

- VERY challenging <  $150 \text{ W/m}^2$ 

#### Radiation hardness:

- modest problem for space experiments < 10<sup>11</sup> 1 MeV neq (TID ~100 krad)

- 10 -

### **Proposed development of LGADs for ADA-5D at FBK**

- large pixels (e.g.: 3mm x 3mm)
- sensor thickness 200-300 um





mini-TILE (2.4cm x 2.4 cm): 16 FE = 8 x 8 LGADs



#### **TILE (9.6 cm x 9.6 cm): 16 mini-tiles = 256 FE =** 16 x 8 x 8 = 1024 LGADs





Each FE chip, connected to 4 LGADS, implements:

- double gain linear range to cover > 1000 m.i.p.
- internal ADC
- internal TAC + ADC conversion
- Track & Hold



Example of a portion of 2 staggered layers:

- no detector material above 1<sup>st</sup> layer
- estimate of 1<sup>st</sup> layer material budget:
  - G10-FR4 (3mm) : 16.88 cm RL =>  $X_0(\%)$  = 0.03/16.88 = 0.178 ○ LGAD (300µm) Si: 9.47 cm RL =>  $X_0(\%)$  = 0.03/9.47 = 0.317 Worst case: LGAD+G10+FE chip ~ 0.178 x 2 + 0.317 = **0.67% RL**
- Assuming a thin window (protection of first layer LGADs) + structural stiffners => requirement: < 1% RL</li>

## ADA-5D Development plan (2023)

4 parallel developments:

- $300\mu m$  thick LGAD sensor (FBK, TIFPA)
- FE chip (Pavia)
- digital readout (Pisa, Padova)
- system level: DAQ and beam tracker (Siena)
- 1<sup>st</sup> LGAD run @FBK

After LGAD production:

- $\circ~$  lab characterization of single LGAD sensors
- mechanical assembly and micro-bonding of 1 FE pixel (2x2 LGADs)
- 1<sup>st</sup> submission of r/o chip

After 1st r/o chip production:

- o lab characterization of FE chip
- 1st prototype of 1 PIXEL (2x2) LGADs
- $\circ~$  characterization and beam test (with ions) of PIXEL
- development of MINI-TILE prototype (16 pixels)
- characterization and beam test (with ions) of MINI-TILE

#### ADA\_5D timeline over 3 years (Gantt chart)

| ID | Task Name                                   | Year | 1   |   |    |     |     |    | N | /ear 2 | 2 | `        |     |           |   |     |            | _ | Year | 3  |   |   |    |            |   |     |     | Yea  | ar 4 |
|----|---------------------------------------------|------|-----|---|----|-----|-----|----|---|--------|---|----------|-----|-----------|---|-----|------------|---|------|----|---|---|----|------------|---|-----|-----|------|------|
|    |                                             | JF   | MA  | M | JJ | A S | s o | NC | 5 | JF     | M | A I      | M J | J         | A | sc  | N          | D | JI   | FM | A | M | JJ | A          | S | 0 1 | D   | J    | F    |
| 1  | WP1 - Phase I                               |      |     |   |    |     |     | -  |   |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 2  | LGAD Simulation and design (FBK)            |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 3  | LGAD 1st batch production @FBK              |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 4  | 1st batch characterization & delivery       |      |     |   |    |     | ú   |    |   |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 5  | WP1 - Phase II                              |      |     |   |    |     |     |    | ١ | -      |   |          |     |           |   |     | •          |   |      |    |   |   |    |            |   |     |     |      |      |
| 6  | (mini-)tile design (FBK)                    |      |     |   |    |     |     |    |   |        | 1 | <b>1</b> |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 7  | (mini-)tile production @FBK                 |      |     |   |    |     |     |    |   |        |   | 1        |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 8  | 2nd batch characterization and delivery     |      |     |   |    |     |     |    |   |        |   |          |     |           |   | min | <b>"</b> ] |   |      |    |   |   |    |            |   |     |     |      |      |
| 9  | WP2 - Phase I                               |      |     |   |    |     |     |    | - |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 10 | FE chip design                              |      | 1 1 |   |    |     |     |    |   |        |   |          |     |           |   | Ì   |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 11 | FE chip 1st version - production            |      |     | Ě |    |     | -   |    |   |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 12 | 1st FE chip - characterization              |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 13 | FE integration with LGAD test structures    |      |     |   |    |     |     | ú  |   |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 14 | MS-1: fist LGAD array test structure        |      |     |   |    |     |     |    | • | 12/2   | 1 |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 15 | WP2 - Phase II                              |      |     |   |    |     |     |    | ١ |        |   |          |     |           |   |     |            |   |      | -  |   |   |    |            |   |     |     |      |      |
| 16 | design of 2nd version of FE chip            |      |     |   |    |     |     |    |   |        |   | בי       |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 17 | production of 2nd version of FE chip        |      |     |   |    |     |     |    |   |        |   | -        | 1   | 1 1       | 1 | 1   |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 18 | integration & test with LGAD array          |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     | 1          |   |      | -  |   |   |    |            |   |     |     |      |      |
| 19 | WP3 - Phase I                               |      |     |   |    |     |     |    | • |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 20 | design & simulation of 1st digital board    | 1    |     |   |    |     |     |    |   |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 21 | production + electrical tests of 1st board  |      |     |   | Ľ  | 1   |     |    | 3 |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 22 | WP3 - Phase II                              |      |     |   |    |     |     |    | 1 |        |   |          |     |           |   |     |            |   |      |    |   |   |    | 7          |   |     |     |      |      |
| 23 | digital r/o integration LGAD test structure |      |     |   |    |     |     |    |   |        |   |          |     |           |   | -   |            | 1 |      |    |   |   |    |            |   |     |     |      |      |
| 24 | design of 2nd version of digital board      |      |     |   |    |     |     |    |   |        | 1 |          | 1   | <b></b> ] |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 25 | production & test of 2nd digital board      |      |     |   |    |     |     |    |   |        |   |          |     | Č         |   |     | -          | - |      |    |   |   |    |            |   |     |     |      |      |
| 26 | integration & test with LGAD arrays         |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     |            |   |      | 1  | 1 |   |    | <b>•</b> ] |   |     |     |      |      |
| 27 | MS-2: LGAD array prototype                  |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     |            | ٠ | 12/1 | 9  |   |   |    |            |   |     |     |      |      |
| 28 | WP4 - Phase I                               |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     | -          |   |      |    |   |   |    |            |   |     |     |      |      |
| 29 | integration of TIMEPIX3 in beam tracker     |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 30 | CR muon tests with tbeam tracker in lab     |      |     |   |    |     |     |    |   |        |   |          |     |           |   | 1   | -          |   |      |    |   |   |    |            |   |     |     |      |      |
| 31 | WP4 - Phase II                              |      |     |   |    |     |     |    |   |        | - |          |     |           |   |     |            | - |      |    |   |   |    |            |   |     |     |      |      |
| 32 | source tests with ADA-5D test structures    |      |     |   |    |     |     |    |   |        |   |          |     |           | _ |     | -          |   |      |    |   |   |    |            |   |     |     |      |      |
| 33 | 1st beam test with ADA-5D test structures   |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 34 | WP4 - Phase III                             |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     |            |   | -    |    | - |   |    |            | + |     |     | •    |      |
| 35 | source tests with prototype                 |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            | - | l   |     |      |      |
| 36 | 2nd beam test with final prototype          |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     |     |      |      |
| 37 | data analysis                               |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     |            |   |      |    |   |   | mm |            |   |     | inn | 3    |      |
| 38 | MS-3: final prototype                       |      |     |   |    |     |     |    |   |        |   |          |     |           |   |     |            |   |      |    |   |   |    |            |   |     | ٠   | 12/2 | 20   |

- 15 -

|                         | ADA-5D 2023 - FTE                                        | PI/SI | PV  | TIFPA | PD  |
|-------------------------|----------------------------------------------------------|-------|-----|-------|-----|
| Pier Simone Marrocchesi | PO Univ. di Siena + INFN Gruppo Collegato                | 0.7   |     |       |     |
| Paolo Maestro           | PA Univ. di Siena + INFN Gruppo Collegato                | 0.4   |     |       |     |
| Gabriele Bigongiari     | PA Univ. di Siena + INFN Gruppo Collegato                | 0.6   |     |       |     |
| Caterina Checchia       | Assegno di ricerca - Univ. di Siena - Associaz. INFN Pis | 0.6   |     |       |     |
| Mina Maghami Moghim     | Dottoranda Univ. di Siena - Associaz. INFN Pisa          | 1.0   |     |       |     |
| Paolo Brogi             | RTDA Univ. di Siena + INFN Gruppo Collegato              | 0.8   |     |       |     |
| Francesco Stolzi        | RTDA Univ. di Siena + INFN Gruppo Collegato              | 0.6   |     |       |     |
| Alberto Messineo        | PA Univ. di Pisa + INFN Pisa                             | 0.1   |     |       |     |
| Lodovico Ratti          | PO Univ. di Pavia                                        |       | 0.3 |       |     |
| Piero Malcovati         | PO Univ. di Pavia                                        |       | 0.3 |       |     |
| Marco Grassi            | RTDB Univ. di Pavia                                      |       | 0.5 |       |     |
| Joana Minga             | Dottoranda (associata sez. Pavia)                        |       | 1.0 |       |     |
| Simone Giroletti        | Dottorando (associato sez. Pavia)                        |       | 1.0 |       |     |
| Carla Vacchi            | RC Univ. di Pavia                                        |       | 0.4 |       |     |
| Lucio Pancheri          | PA Univ. di Trento                                       |       |     | 0.4   |     |
| GianFranco Dalla Betta  | PO Univ. di Trento                                       |       |     | 0.1   |     |
| Thomas Corradino        | Dottorando (associato TIFPA)                             |       |     | 0.5   |     |
| Alberto Taffelli        | Dottorando (associato TIFPA)                             |       |     | 0.8   |     |
| Maurizio Boscardin      | FBK Ricercatore Senior (associato TIFPA)                 |       |     | 0.1   |     |
| Matteo Centis Vignali   | FBK (associato TIFPA)                                    |       |     | 0.1   |     |
| Omar Hammad Ali         | FBK (associato TIFPA)                                    |       |     | 0.2   |     |
| Gianmaria Collazuol     | PA Univ. di Padova                                       |       |     |       | 0.2 |
| Marco Mattiazzi         | Dottoranda (associata sez. Padova)                       |       |     |       | 0.7 |
| Matteo Feltri           | Post-doc (associato sez. Padova)                         |       |     |       | 0.3 |
| TOTALE FTE              | 11.7                                                     | 4.8   | 3.5 | 2.2   | 1.2 |
| F.Morsani               | Tecnologo INFN Pisa                                      | 0.1   |     |       |     |
| Stiaccini Leonardo      | Tecnico Università di Siena                              | 0.5   |     |       |     |

- 16 -

|                         | ADA_5D 2023 - PREVENTIVI                   | PI/SI | PV | TIFPA | PD | TOT  |
|-------------------------|--------------------------------------------|-------|----|-------|----|------|
| Missioni                | missioni in Italia (no beam test nel 2023) | 4.5   | 2  | 2     | 2  | 10.5 |
| Consumo                 | elettronica                                | 11.5  | 4  | 4     | 10 | 29.5 |
| Costruzione Apparati    | LGAD (FBK) + FE ASIC (PV)                  |       | 24 | 27.5  |    | 51.5 |
| Inventariabile          |                                            |       |    |       |    | 0    |
| TOTALE richieste x 2023 |                                            | 16    | 30 | 33.5  | 12 | 91.5 |

| •                                       | ADA_5D 2023 - 2025                                                    | 2023 | 2024 | 2025 |
|-----------------------------------------|-----------------------------------------------------------------------|------|------|------|
| Missioni                                | beam tests (sj)                                                       |      | 15   | 15   |
|                                         | missioni in italia                                                    | 10.5 | 6    | 6    |
| Consumi                                 | <u>componentistica elettronica</u> + <u>meccanica</u> + <u>schede</u> | 26   | 25   | 28   |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | tracker upgrade                                                       | 3.5  | 6    |      |
|                                         | runs di produzione del chip di front-end                              | 24   | 42   |      |
| Apparati                                | runs di produzione di LGADs a FBK                                     | 27.5 | 26   |      |
|                                         |                                                                       |      |      |      |
|                                         | TOTAL 260.5                                                           | 91.5 | 120  | 49   |

#### ADA-5D: Richieste di servizi in sezione per il 2023

- Supporto gruppo alte-tecnologie (micro-bonding)
- Supporto progettazione elettronica (<u>2 mesi uomo</u>)
- Eventuale uso della stampante 3D (A. Basti)
- utilizzo del laboratorio di HERD/ASAP (ASAP in chiusura nel 2022)