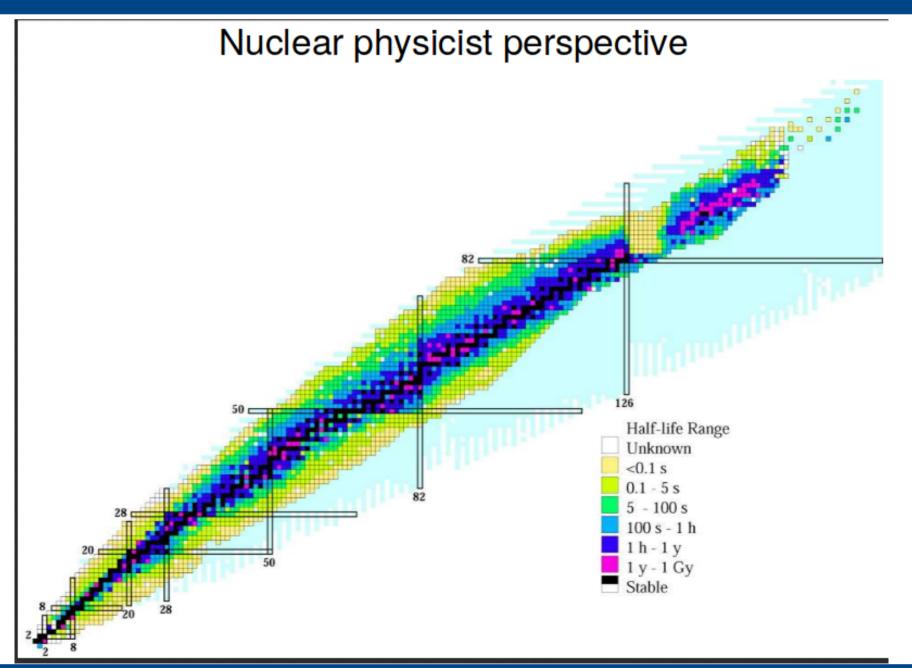
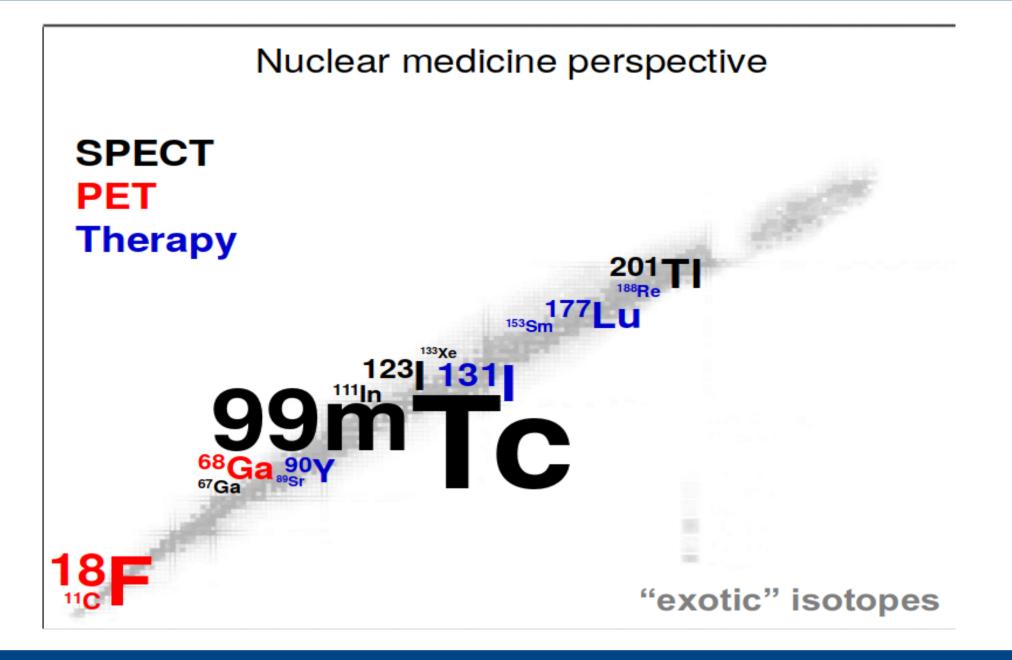
Nuclear-reaction theory as a research tool for innovative radioisotope production in nuclear medicine.

Canton L. INFN - Sezione di Padova, Italy

Projects: REMIX, METRICS CS5 (Interdisciplinary); NUCSYS CS4

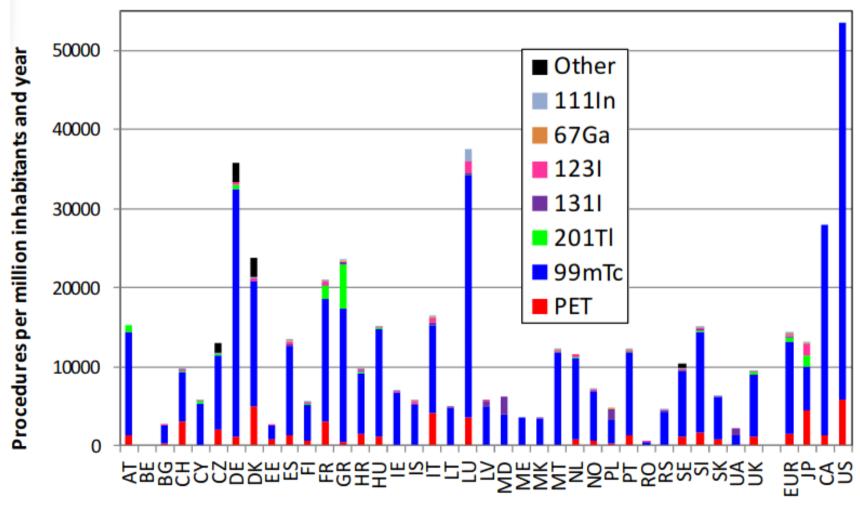
Collaboration: LNL, PD, PV, MI, FE, Arronax (Nantes), Ospedale Sacro Cuore Don Calabria (Negrar, Verona), IOV


Ricordo di **Gianni Fiorentini** 22 febbraio 1948 – 18 giugno 2022

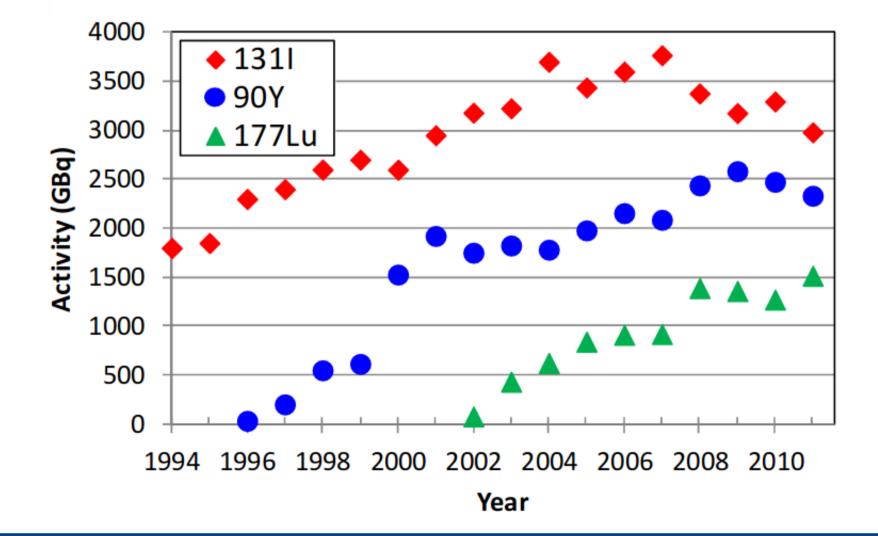

Come direttore di Laboratorio LNL,

Gianni ha avuto un ruolo fondamentale e cruciale, fra le moltissime altre cose, nel portare la ricerca sui radiofarmaci nei laboratori LNL, e in particolare è la persona che mi ha incoraggiato ad impegnarmi in questa linea di ricerca.

Introduction to radionuclides for medicine



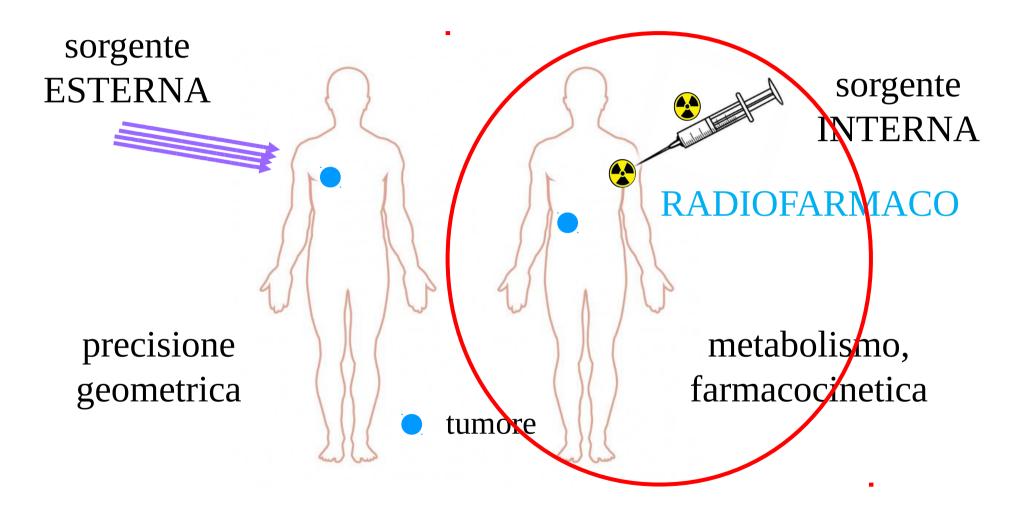
CAGLIARI, 22 June 2012

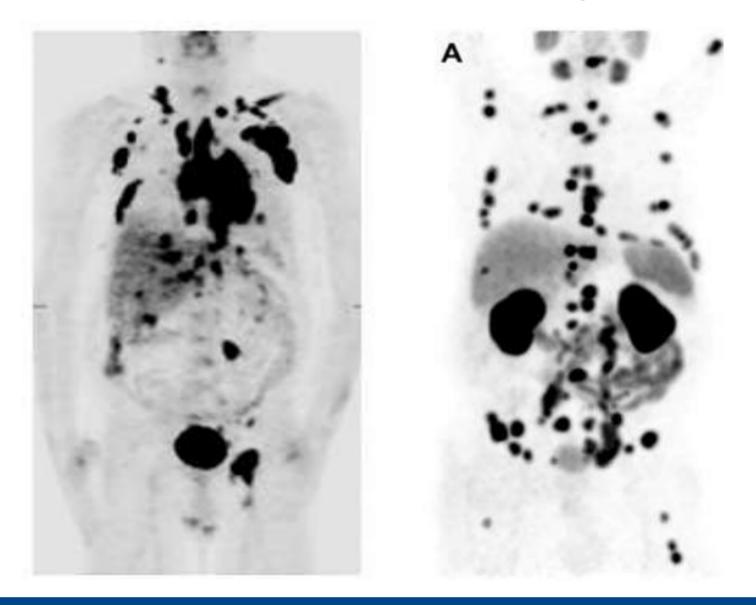

Introduction to radionuclides for medicine

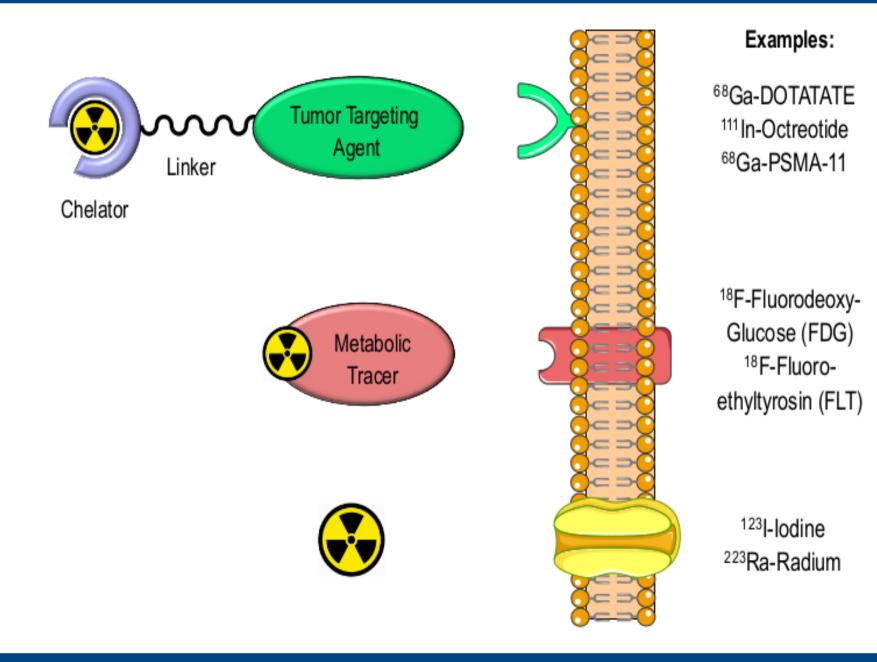
Statistics of radionuclide use in Europe



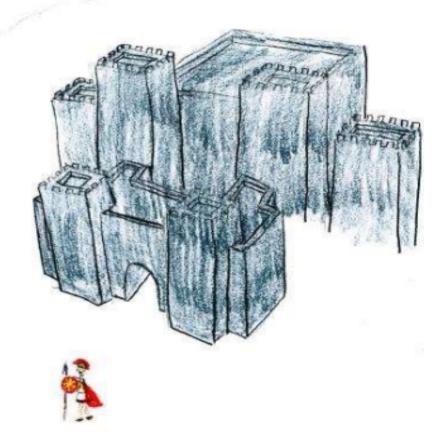
Use of diagnostic isotopes in Europe, USA, Canada and Japan

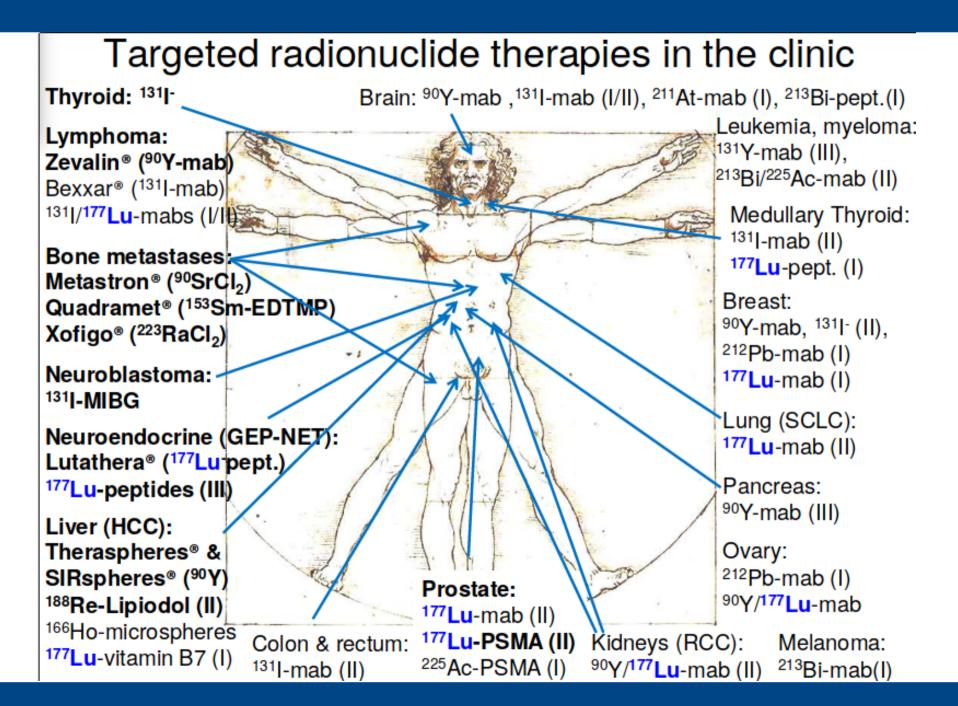

Evolution of use of therapeutic isotopes in Switzerland

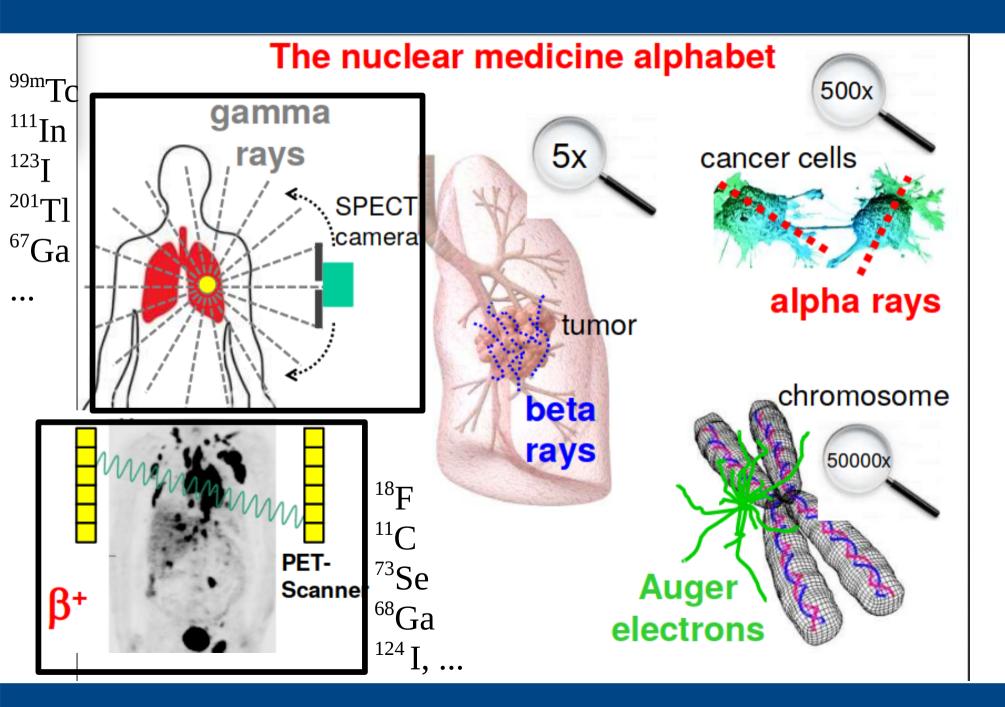

Comparison of Cancer Therapies


(Molls, TU München; according to Tannock: Lancet 1998, Nature 2006)

Question: How to treat such patients?




Radiopharmaceticals - The Concept Simplified



The principle of targeted therapies

- "attractive" vector > high uptake by the target
- transportable
- good in-vivo stability
- warriors "not visible"
- delayed uptake > suitable half-life
- limited space > high specific activity
- optimum arms
- specific

Range of therapeutic nuclides

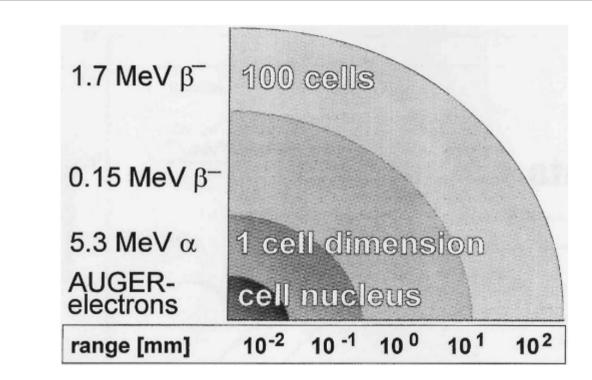
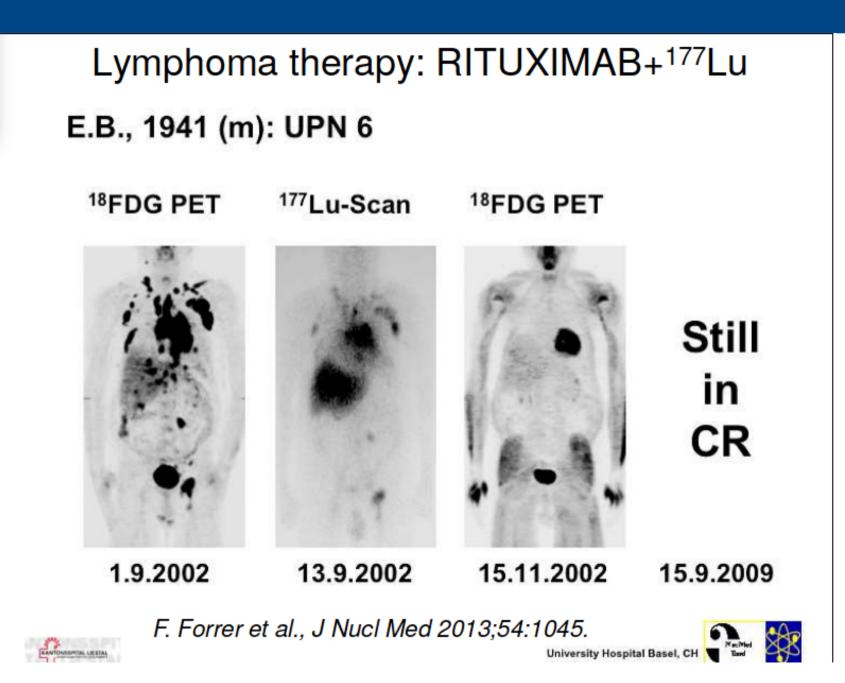



FIG. 1.1. Correlation between type and energy of corpuscular radiation, and the range in tissue

Range

Beta-Fino a 10 mm (500 cellule)

Alpha Fino a 100 µm (10 cellule) Auger ~10 µm (meno di una cellula)

New Directions in Radionuclide Applications

Syed M Qaim, Lecture IAEA, dec 2018

Theranostic approach

(combination of PET / Targeted therapy) ⁴⁴Sc/⁴⁷Sc, ⁶⁴Cu/⁶⁷Cu, ⁸⁶Y/⁹⁰Y, etc.

- CUPRUM ..? 2023 Multimode imaging (combination of PET/CT and PET/MRI)
 - Radioactive nanoparticles

Possible improvement in delivery of radionuclide to tumour

Continuous radionuclide research is underway.

COME INFN-LNL

PASTA, REMIX INFN-LNL

METRICS INFN-LNL

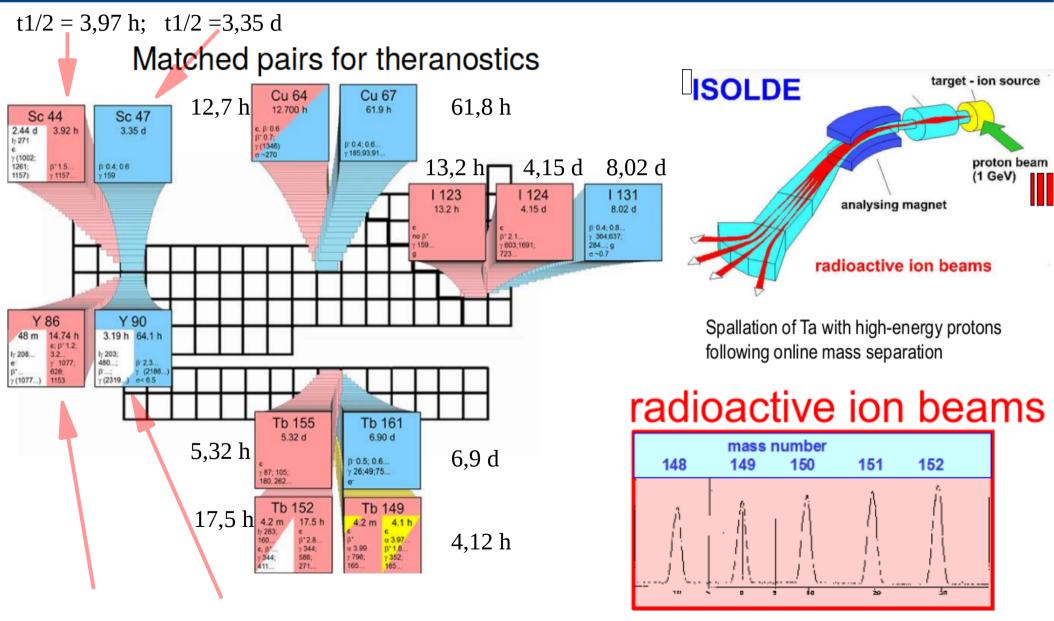
Another view at the chemical elements

1 H Hydrogen 1.008 3 Lithium 8.94 11 Na Sodium	4 Be Beytlium 9.0122 12 Mg Magnesium		 PET Beta Therapy SPECT Alpha Therapy Auger e⁻ Therapy 									5 B Boron 10.81 13 All Aluminium	6 C Carbon 12011 14 Silicon	7 Nitrogen 14.007 15 Phosphorus	6 O Oxygen 15.009 16 Suffur	9 Fluorine 18.000 17 Cl Chlorne	2 Helium 4.0028 10 Neon 20.180 18 Argon
22 990 19 K Potassium 39 008 37 Rb	24.305 20 Ca Calcium 40.078(4) 38	21 Scendium 44.956	22 Ti Titanium 47.887 40 Zr	23 Vanadium 50.942 41 Nb	24 Cr Chromium 51.998 42 MO	25 Mn Manganese 54.938 43 TC	26 Fe 55.845(2) 44 Ru	27 Cobet 88 933 45 Rh	28 Nickel 58 093 46 Pd	29 Cupper 83.546(3) 47 Ag	30 Zn 65.38(2) 48 Cd	28.982 31 Gallium 69.723 49	28.085 32 Gee Germanium 72.630(8) 50	30,974 33 AS Arsenic 74,922 51 Sb	32.06 34 Selenium Selenium 52 Te	35.45 35 Bromine 79.904	39.948 38 Kryptor 83.798(2) 54 Xe
Rubidium 85.488 55 Caesium 132.91 87	Strontiu 87.62 56 Ba Barium 137.33	Yttrium 88.908 57-71 *	Zirconium 91.224(2) 72 Hff Hafnium 178.49(2) 104	Niobium 92,908 73 Tantalum 180,95 105	Molybdenum 95.95 74 W Tungsten 183.84 106		Ruthenium 101.07(2) 76 OS Osmium 00.23(3) 108	Rhodium 102.91 77 Iridium 192.22 109	Palladium 108.42 78 Pt Pt Platinum 10	Silver 107.87 79 AU Gold 196.97	Cadmium 112.41 80 Hg Mercury 200.59	Indium 14.82 81 Thailiun 204.38	Tin 118.71 82 Pb Lead 207.2	Antimony 121.78 83 Bismutt 208.98 115	Tellurium 127.60(3) 84 Polonium 116	lodine 128.00 85 At Astatine	Xenon 131 29 86 Radon 118
Francium	Radium	89-103 **		Db Dubnium	Seaborgium	Bh	Hassium	Mt Meitnerium	Ds Darmstadtium	Roentgenium	Copernicium	Nhonium	Flerovium	Mc	Lv	Ts Tennessine	Og Oganesson

Lanthanoids	57 La Lanthanum 138.91	S8 Cee Cerium 140.12	Praseodymum 140.91	Neodymium 144.24	Promethium	62 Sm Samarium 150.38(2)	Europium 151.96	Gadolinium 157.25(3)	erbium 58.93	by Dysprosition 162.50	Holmium Holmium	Erbium 167.28	69 Tm Thulium 188.93	70 Yb Ytterbium 173.05	Lutetium 174.97
**Actinoids	Actinium	90 Th Thorium 232.04	Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium	Plutonium	Americium	Cm Curium	97 Bk Berkelium	S8 Cf Californium	99 Es Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

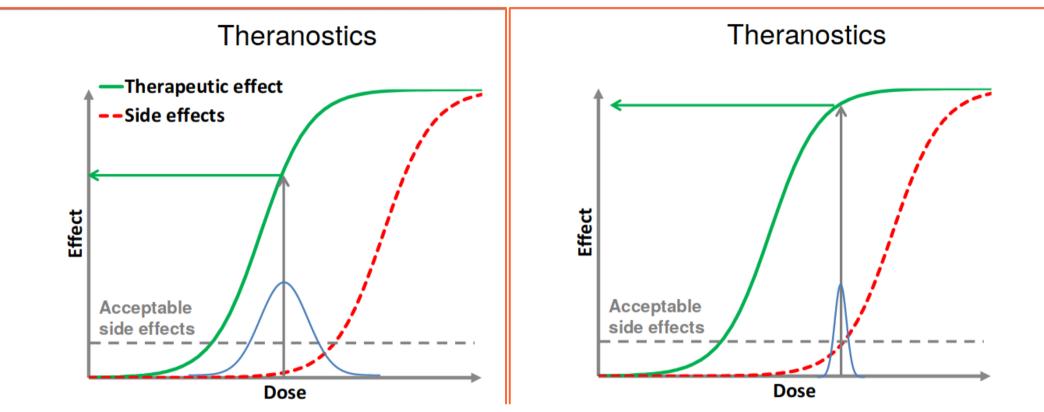
*La

**

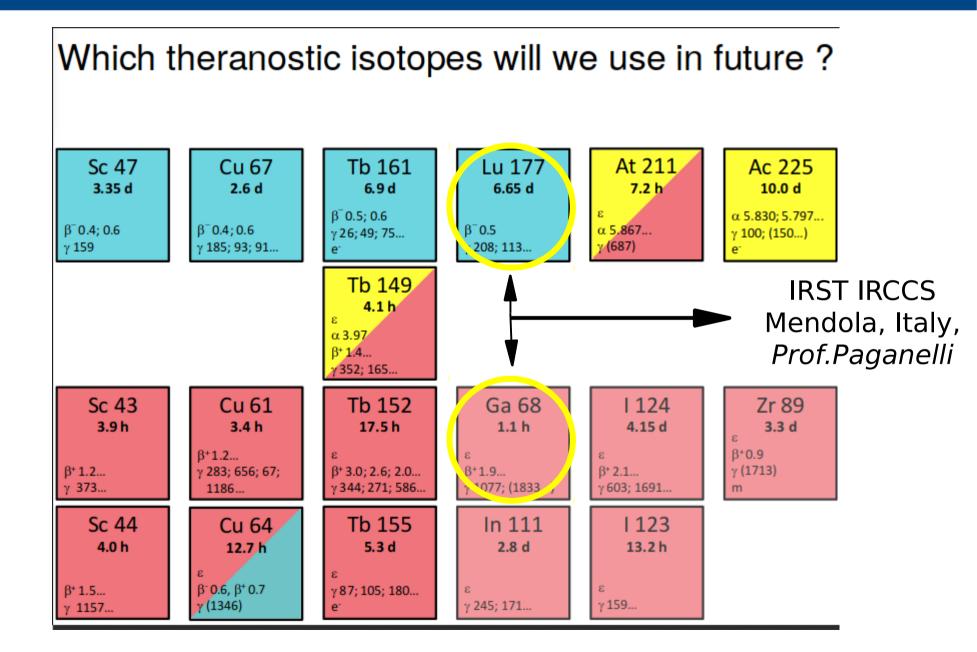

Another view at the chemical elements

1 H Hydrogen 1.008 3 Lithium 8.94 11 Na Sodium 22.990	4 Be Beyllium 9.0122 12 Mg Magnesium 24.305		PE SF		T	A	pha	a Th	erap Iera The	ру	у	5 B Boron 1081 13 Aluminium 20.992	6 C Carbon 12011 14 Silicon 28,085	7 Nitrogen 14.007 15 Phosphorus 30.974	8 O Okygen 15,999 16 S Sulfur 32,08	9 Flucrine 18.998 17 Chlorine 35.45	2 Helium 4.0028 10 Neon 20.180 18 Neon 20.180 18 Argon 36.948
19 K Potassium 39.096 37 Rbb Rubidium	20 Calcin 40.078	21 Scandium 44.956 39 Yttrium	22 Fi <i>anium</i> <i>7.887</i> 40 Zr Zirconium	23 Vanadium 50.942 41 Niobium	24 Cr Chromium 51.998 42 MO Molybdenum	25 Mn Manganese 54.938 43 TC Vechnetium	Fe Iron 55.845(2) 44 Ruthenium	Cobelt Co	28 Ni Nickel 58.093 46 Pdd Palladium	29 Copper 63.648(3) 47 Ag Silver	30 Zn 2inc 65.38(2) 48 Cd Cadmium	31 Gallium 69.723 49 In Indium	32 Germanium 72 630(8) 50	Arsenit 44 922 51 Sb	3200 34 Selenium Selenium 52 Tellurium	35 Br Bromine 79.904	38 Kryptor 83 798(2) 54 Xeo Xeoon
85.488 55 Caesium 132.91 87 Francium	87.62 56 Barium 137.33 88 Radium	\$8,008 57-71 * 89-103 **	91 224(2) 72 Hf Hafnium 178.49(2) 104 Rutherfordium	92,908 73 Tantalum 180,95 105 Dbb Dubnium	95.95 74 W Tungsten 183.84 106 Sgg Seaborgium	75 Re Rhenium 188.21 107 Bh Bohrium	101.07(2) 76 Osmium 00.23(3) 108 Hassium	102.91 77 Ir Iridium 102.22 109 Mt Meitnerium	108.42 78 Pt Platinum 10 DS Darmstadtium	107.87 79 Au Gold 196.97 111 Rgg Roentgenium	Hg Mercury 200.59 112 Copernicium	Thalium Phalium Phalium Nihonium	118.71 82 Pb Lead 207.2 114 Fl Flerovium	Bismut 208.98 115 Moscovium	127.60(3) Polonium 116 LV Livermorium	Att Astatine	131 29 86 Radon 116 Ogg Oganesson

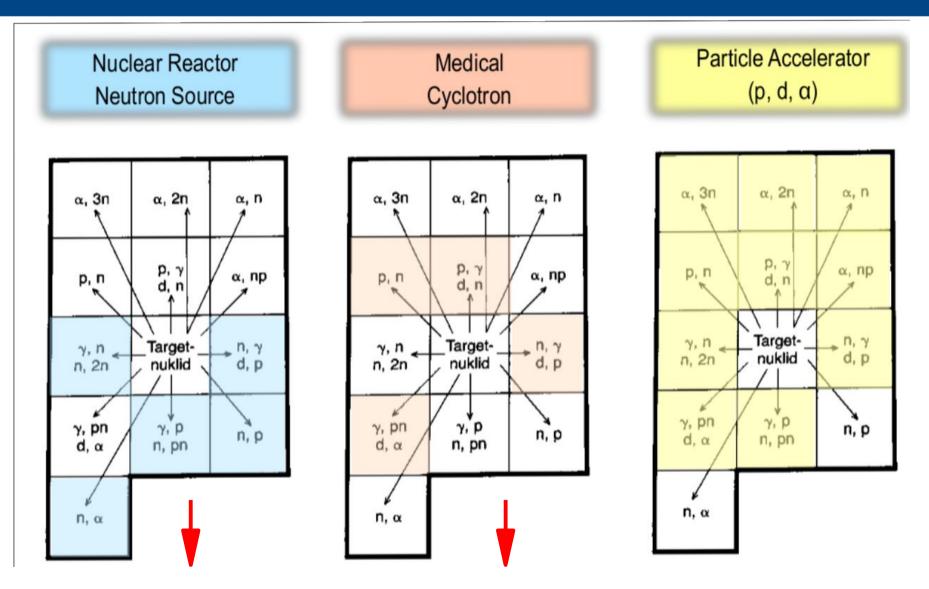
anthanoids	57 La	Cerium		Neodymium	Promethium	Samarium	Europium	Gado jum	erbium		Holmium	Erbium	69 Tm Thulium	Ytterbium	Lutetium
*Actinoids	Actinium	140.12 90 Th Thorium 232.04	91 Pa Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium	94 Putonium	95 Am Americium	157.2. 3) 98 Curium	97 BK Berkelium	98 Cf Californium	99 Es Einsteinium	167.28 100 Fermium	101 Md Mendelevium	173.05 102 Nobelium	174.97 103 Lr Lawrencium


*Lar

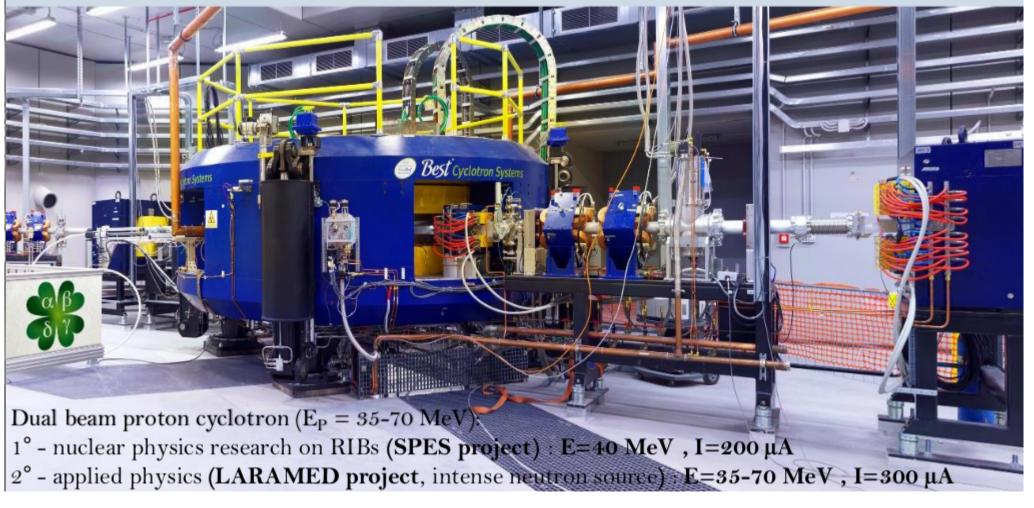
**A



T1/2 = 14,74 h; t1/2 = 64,05 d


Therapeutic window

Accurate dosimetry is essential for optimum use of the therapeutic window !!!


Manifacturing radionuclides

Often Beta- emitter Therapy nuclides Often Beta+ emitter PET nuclides

SPES INFN - Legnaro Padova

The new 70 MeV proton cyclotron @ INFN-LNL

DUAL RADIO PHARMACEUTICAL PRODUCTION: LARAMED - ISOLPHARM

Four Pillars of Radionuclide Development Work

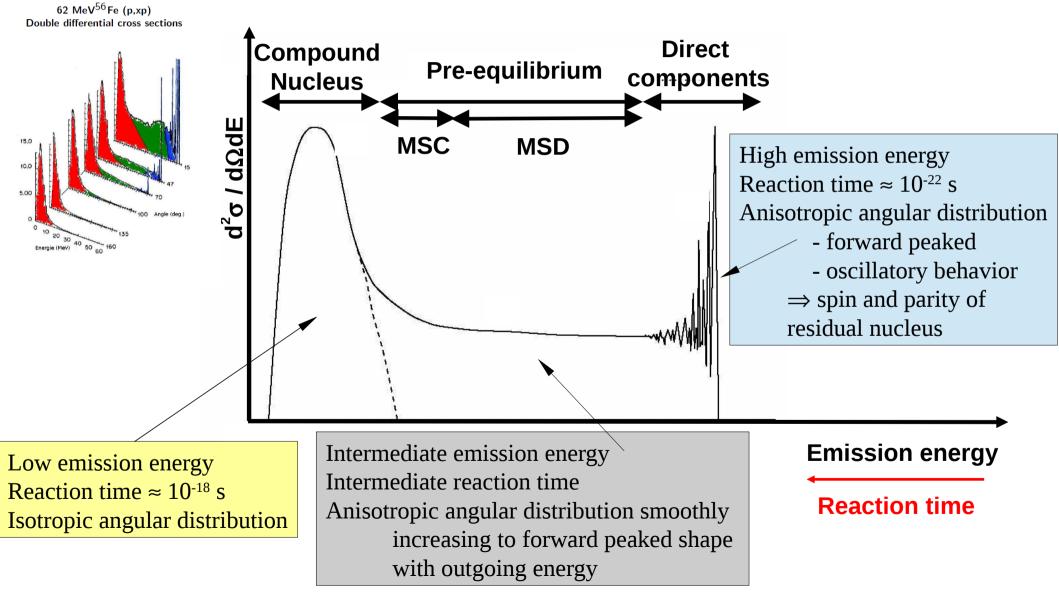
- Nuclear data
 - decay properties
 - production cross sections
- High current targetry
- Chemical processing
 - isolation of radionuclide and recovery of enriched target material
- Quality control
 - radionuclidic, radiochemical, chemical, specific activity

Syed M Qaim, Lecture IAEA, dec 2018

IAEA 473 technical report 2021

The case of ⁴⁷Sc

lsotop e		lalf- life	Ea	β ⁺ _{verage} [KeV](I)	X and γ [KeV] (I)		E _{aver}	/](I)		
⁴⁷ Sc	3	.35 d		_		159.38 (68.3%)		162 (100%)		
⁴³ Sc		3.9 h	۷	476 (88.1%)		372 (23%)		-		
⁴⁴ Sc	Z	1.0 h	6	32 (94.27 %)	1	157 (100%)		-		
	CT. Review Qaim, Scholten, Neumaier, JRNC 318 , 1493 (201							l otope	herap half-life	ру
Production route		Irradiatio	n	Batch yield		Laboratov		Sc	3.89 h	
⁴⁷ TI(n,p) ⁴⁷ Sc		Fission spe	ctrum	1.6 GBq	Brookhaven, 1998		Sc	3.97 h		
$^{48}\text{Tl}(\gamma,p)^{47}\text{Sc}$	⁴⁸ Tl(γ,p) ⁴⁷ Sc 40 Me			186 MBq (3 g TiO ₂ target)	Argonne, 2018		'Sc Sc	58.6 h stable		
${}^{46}Ca(n,\gamma){}^{47}Ca \xrightarrow{\beta^-}$	⁴⁷ Sc	High therman neutron flux		600 MBq 1 mg target, ⁴⁶ Ca (31.7 % enric	Grenoble/PSI, 2014	46g	Sc	83.79 d		
⁴⁸ TI(p,2p) ⁴⁷ Sc	⁴⁸ TI(p,2p) ⁴⁷ Sc 48		eV	900 MBq Purity not acceptable	Brookhaven, 1998		'Sc Sc	18.75 s 3.35 d		
$^{48}\text{Ca}(p,2n)^{47}\text{Sc} \qquad 24 \rightarrow 17 \text{ MeV}$			eV	~ 10 MBq	Warsaw, 2017	48		43.67 h		
All mostly	All methods of 47 Ce production pool further development 49 Sc 57.2 m									


All methods of ⁴⁷Sc production need further development.

The case of ⁴⁷Sc

		Enriched materials are VERY expensive!
Target (abundance)	Measured cross section	Comment
Ti-48 (73.73%)	 Gadioli et al (1981): Sc-47, Sc-46, Sc-44, Sc-43 (V-48, V-47, K-43, K-42, Cl-39, Cl-34m) Levkovskij (1991): Sc-47, Sc-44m, Sc-44 (V-48, V-47) 	 Experiments done with oxide Ti-48 (99.1%) Not all the contaminant radionuclides were measured → It is important to verify the cross sections by using updated nuclear data and metal targets (highest available enrichment)
Ti-49 (5.41%)	 Levkovskij (1991): Sc-48, Sc-46 (V-48) 	No experimental data available for Sc-47
Ti-50 (5.18%)	 Gadioli et al (1981): Sc-48, Sc-47, Sc-46, Sc-44, Sc-43 (K-43, K-42, Cl-39, Cl-38) 	Experiments done with oxide Ti-50 enriched 69.7% and corrected with exp data for contamination of Ti-48 (23%) and theoretical data for Ti-49 (2.0%), Ti-47 (2.4%) and Ti-46 (3.1%)
V-nat (V-51: 99.750%)	Many authors: Sc-48, Sc-47, Sc-46, Sc-44m, Sc-44, Sc-43 (V-48, Cr-48, Cr-49, Cr-51, K-43, K-42)	Very interesting due to the low cost and highly available material ; it is important to verify quantity and quality of produced Sc-47

Nuclear reaction calculations ...

TIME SCALES AND ASSOCIATED MODELS

Nuclear reaction theory: general

S-matrix: the response of the target

The S-matrix measures the response of the target: a real potential cannot create or destroy particles, it can change only the phase of the outgoing wave, not the modulus

$$S_\ell = e^{2i\delta_\ell}$$

The total elastic cross section becomes:

$$\sigma_{el} = \frac{\pi}{k^2} \sum_{0}^{\infty} (2\ell + 1) |\mathbf{S}_{\ell} - 1|^2$$

No nuclear reactions here!

Nuclear reaction theory: general

loss of elastic flux:
$$|\mathbf{S}_{\ell}| < 1$$

$$\sigma_{el} = \frac{\pi}{k^2} \sum_{0}^{\infty} (2\ell + 1) |S_{\ell} - 1|^2$$
$$\sigma_{r} = \frac{\pi}{k^2} \sum_{0}^{\infty} (2\ell + 1) (1 - |S_{\ell}|^2)$$
$$\sigma_{tot} = \sigma_{el} + \sigma_{r} = \frac{\pi}{k^2} \sum_{0}^{\infty} (2\ell + 1) (1 - \mathcal{R}eS_{\ell})$$

The transmission coefficient T_{ℓ} is

$$T_{\ell} = 1 - |S_{\ell}|^2$$
 (5)

9

Nuclear reaction theory: general

Optical Potential U(r)

Coulomb part: $V_C(r) = Z_1 Z_2 e^2/r$

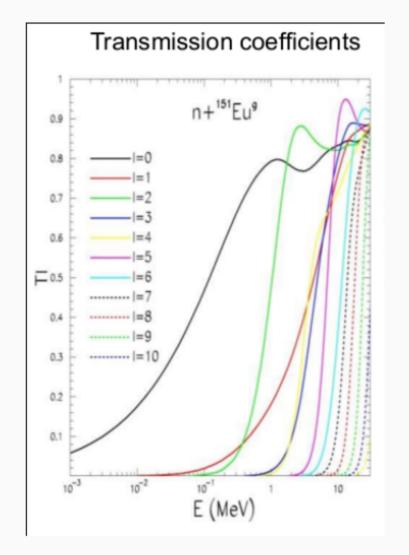
Real Nuclear part: V(r) for nuclear attraction

Imaginary Part W(r): for reaction to occur

Spin-Orbit part: $V_{SO}(r)$ Important ingredient of nuclear force and for polarization data

 $U(r) = V_{C}(r) + V(r) + iW(r) + V_{SO}(r)$

CN basics


Continuum overlapping levels
 Independence initial/exit channel

 $\sigma_{ab} = \sigma_a^{CN} P_b$

Hauser-Feshbach formula:

$$\sigma_{ab} = \frac{\pi T_a}{k_a^2} \frac{T_b}{\sum_c T_c}$$

Need transmission coefficients (from optical potentials)

20

Loop over angular momentum and parity

$$\sigma_{ab} = \frac{\pi}{k_a^2} \sum_{J,\pi} \sum_{\alpha,\beta} \frac{2J+1}{(2\mathsf{s}+1)(2I+1)} \frac{\mathcal{T}_a^{J,\pi}(\alpha)\mathcal{T}_b^{J,\pi}(\beta)}{\sum_{\delta} \mathcal{T}_d^{J,\pi}(\delta)}$$

Adding the WIDTH-FLUCTUATION CORRECTION

$$\sigma_{ab} = \frac{\pi}{k_a^2} \sum_{J,\pi} \sum_{\alpha,\beta} \frac{2J+1}{(2\mathsf{s}+1)(2I+1)} \frac{\mathcal{T}_a^{J,\pi}(\alpha)\mathcal{T}_b^{J,\pi}(\beta)}{\sum_{\delta} \mathcal{T}_d^{J,\pi}(\delta)} \mathbf{W}_{\alpha,\beta}$$

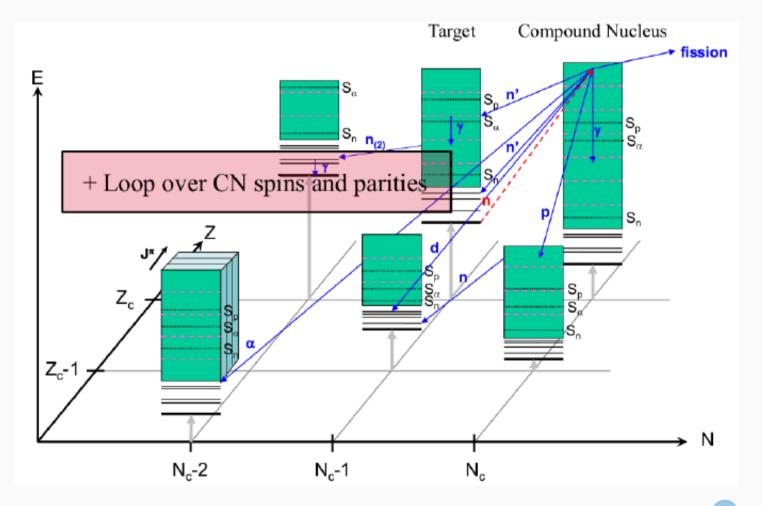
Adding the DENSITY OF RESIDUAL NUCLEUS LEVELS

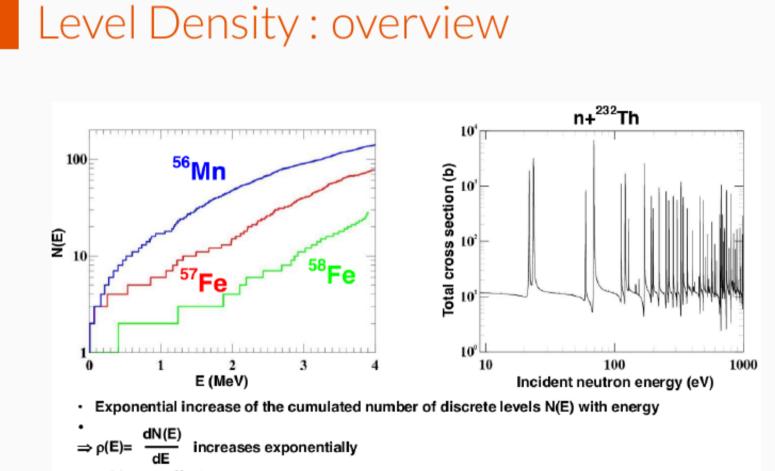
$$\sigma_{ab} = \frac{\pi}{k_a^2} \sum_{J,\pi} \sum_{\alpha,\beta} \frac{2J+1}{(2s+1)(2I+1)} \frac{T_a^{J,\pi}(\alpha) < \mathbf{T}_{\mathbf{b}}^{J,\pi}(\beta) >}{\sum_{\delta} < \mathbf{T}_{\mathbf{d}}^{J,\pi}(\delta) >} W_{\alpha,\beta}$$

Averaging over Residual Nucleus Density Levels

Emission \rightarrow discrete level with energy E_b

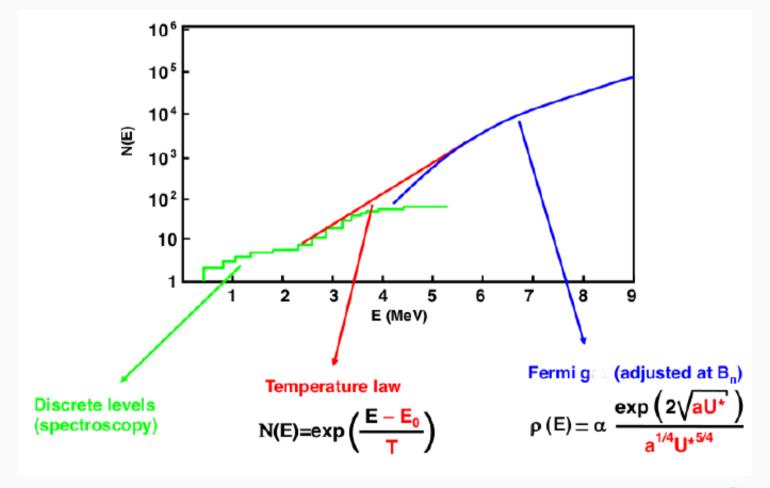
 $< T_b(\beta) >= T_b^{\prime \pi}(\beta)$ (from O.M.Potential)


Emission in the continuum level


$$< T_b(\beta) > = \int_E^{E+\Delta E} T_b^{f\pi}(\beta) \rho(E,J,\pi) dE$$

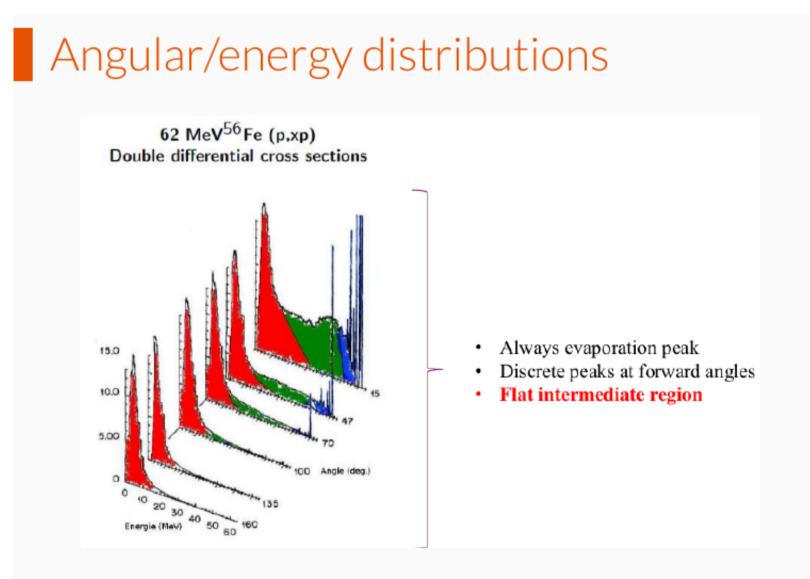
 $\rho(E, J, \pi)$ DENSITY of residual nuclear levels (J, π) with excitation energy *E*

CN multiple emissions

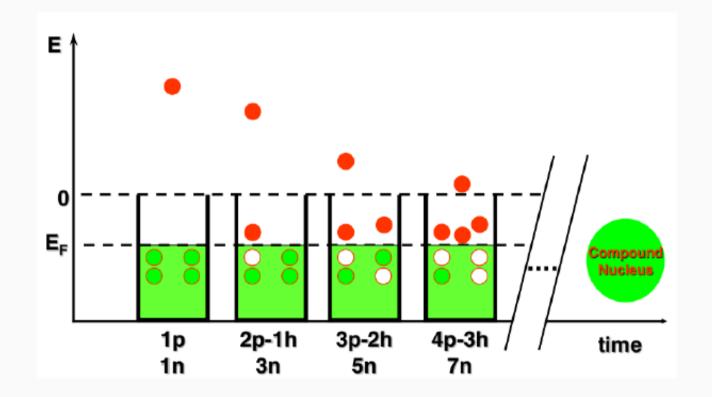


⇒ odd-even effects

26


Nuclear reaction theory: compound

28


Nuclear reaction theory: pre-equilibrium

Nuclear reaction theory: pre-equilibrium

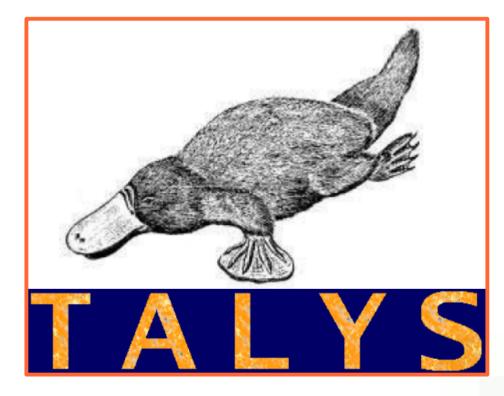
Nuclear reaction theory: pre-equilibrium

Sketch of the master equation

-q(n, E, t) Probability of finding the composite system in exciton *n* and energy *E*

- $-\lambda^{\pm}(n, E)$ Transition rate $n \rightarrow n \pm 2$
- -w(n, E) Total emission rate from *n* excitons

$$\dot{q}(n,t) = \lambda^{+}(n-2)q(n-2,t) + \lambda^{-}(n+2)q(n+2,t) -(\lambda^{+}(n) + \lambda^{-}(n) + \mathbf{w}(n))q(n,t)$$


$$\frac{d\sigma^{P.E.}}{dE}(a,b) = \sigma_a \sum_{n,\Delta n=2} w_b(n,E) \int_0^\infty q(n,E,t) dt$$

Nuclear reaction calculations ... codes

Talys 1.9, Fluka dev 2018.1, Empire 3.2

A. Koning, et al. "TALYS: A nuclear reaction program", User Manual (2015)

(developed by NRG-CEA)

Nuclear Reaction Model Code

M. Herman, et al, "EMPIRE: Nuclear Reaction Model Code System for Data Evaluation", Nucl. Data Sheets, 108 (2007) 2655-2715. (maintained by IAEA)

T.T. Böhlen, et al."The FLUKA Code: Developments and Challenges for High Energy and Medical Applications", Nuclear Data Sheets 120, 211-214 (2014)

(developed by INFN-CERN)

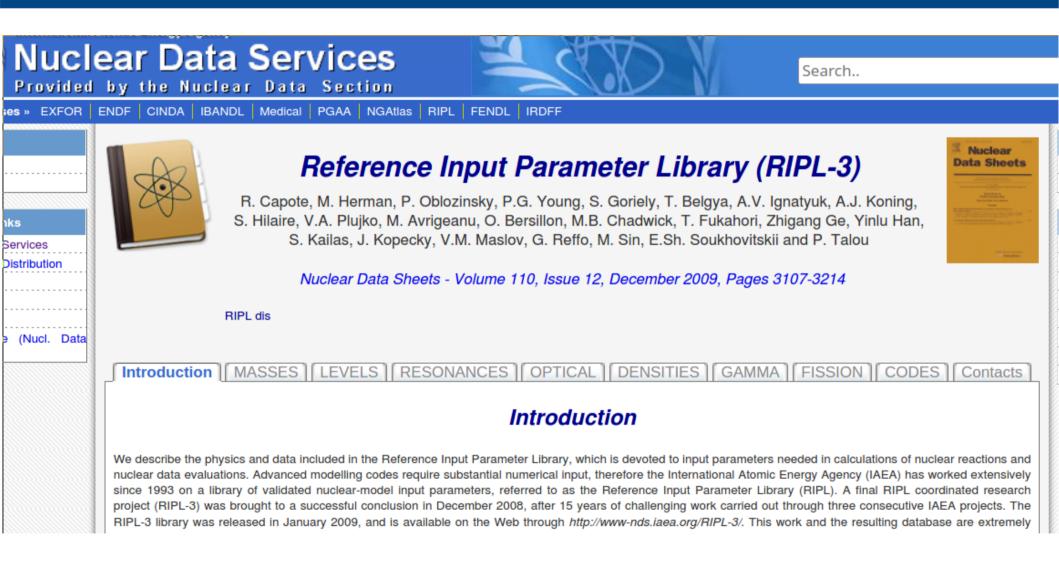
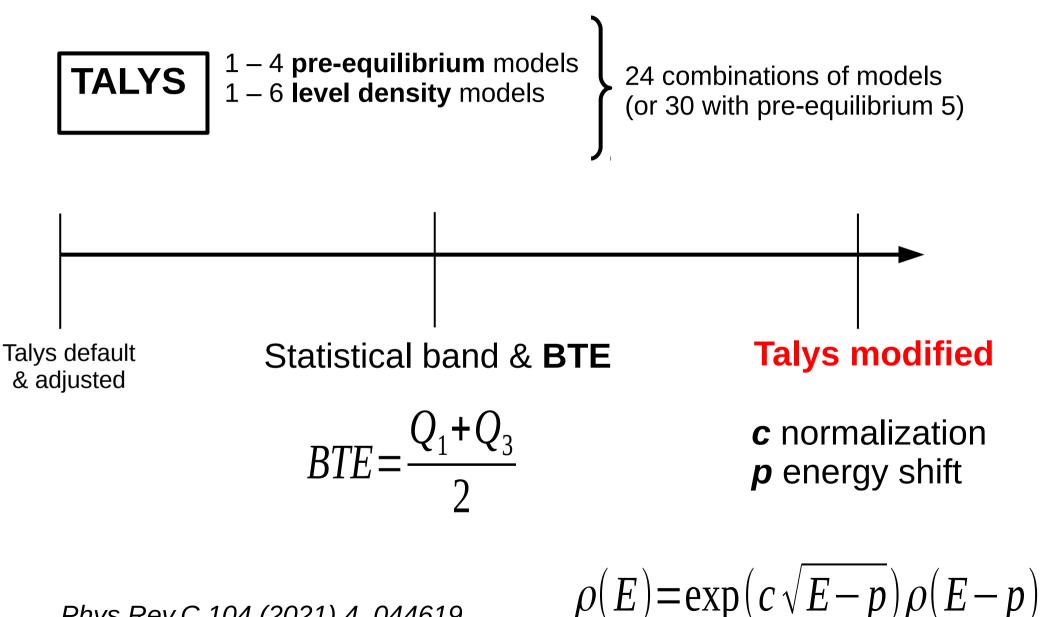
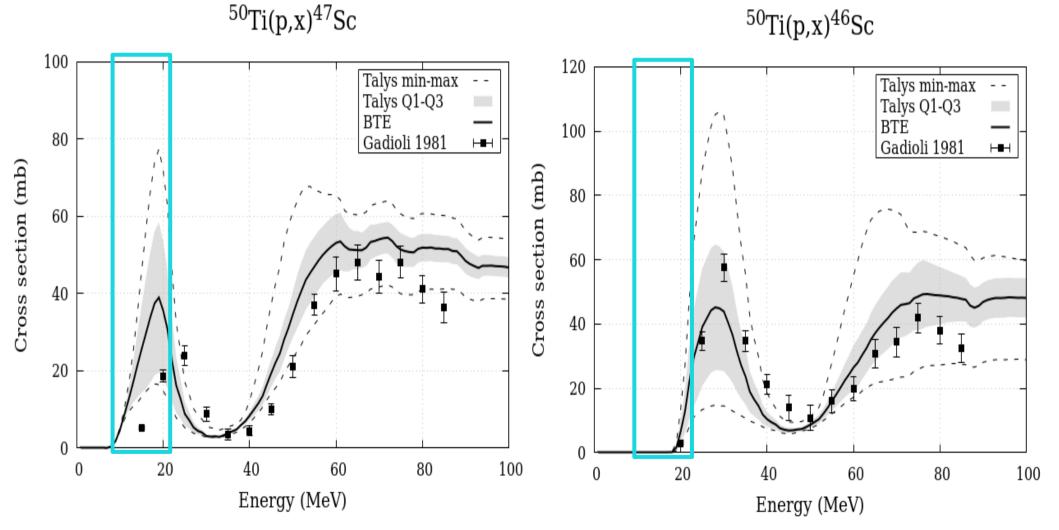

Nuclear Reaction Calculations

Table 1: Pre-equilibrium (PE) and level density (LD) Models used by the referenced codes. ¹


Code	Pre-equilibrium		Level density	
	Model		Model	
	1	Exciton (analytical)	1	CT+FG
	2	Exciton (numerical)	2	BSFG
Talys	3	Exciton + Optical	3	GSFM
	4	MSD/MSC	4	Microscopic (Goriely)
	(5)	New Exciton	5	Microscopic (Hilaire)
		Geometry dependent	6	T-dep HFB
Empire	HMS		EGSM	
Fluka	PEANUT		Modified FG	

¹MSD: Multi-Step Direct, MSC: Multi-Step Compound, CT: Constant temperature, FG: Fermi Gas, BSFG: Back Shifted Fermi Gas, GSFM: Generalized SuperFluid Model, HFB: Hartree-Fock-Bogliubov. PEANUT: Pre-equilibrium Approach to NUclear Thermalization, HMS: Hybrid Montecarlo Simulation, EGSM: Enhanced Generalized Superfluid Model.

The importance of RIPL



Modeling of the relevant cross sections with nuclear reaction code

Phys.Rev.C 104 (2021) 4, 044619

⁵⁰Ti – statistical band & BTE

⁴⁹Ti – statistical band & BTE

Talvs min-max - -Talys min-max Talys Q1-Q3 Talys Q1-Q3 BTE BTE Levkovskij 1991 Cross section (mb) Cross section (mb) Energy (MeV) Energy (MeV)

⁴⁹Ti(p,x)⁴⁷Sc

⁴⁹Ti(p,x)⁴⁶Sc

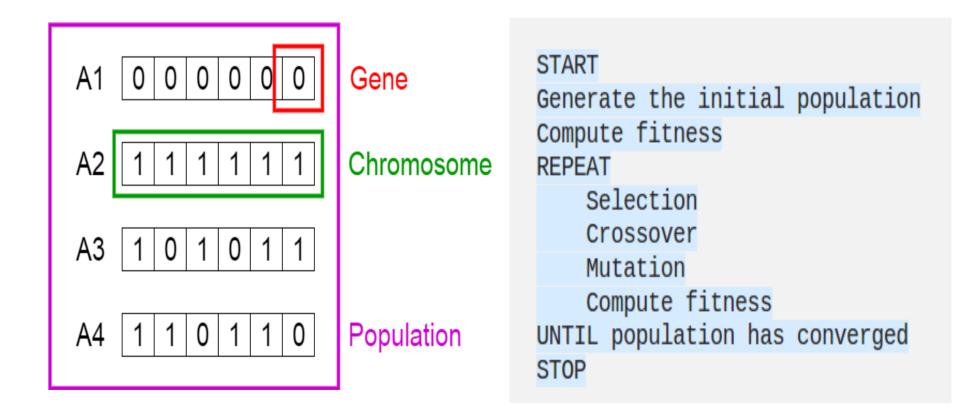
Microscopic NLD parameter optimization

NEW DATA FROM REMIX! WORLD FIRST MEASUREMENT OF SC47 PRODUCTION FROM ENRICHED TI47 TARGETS......

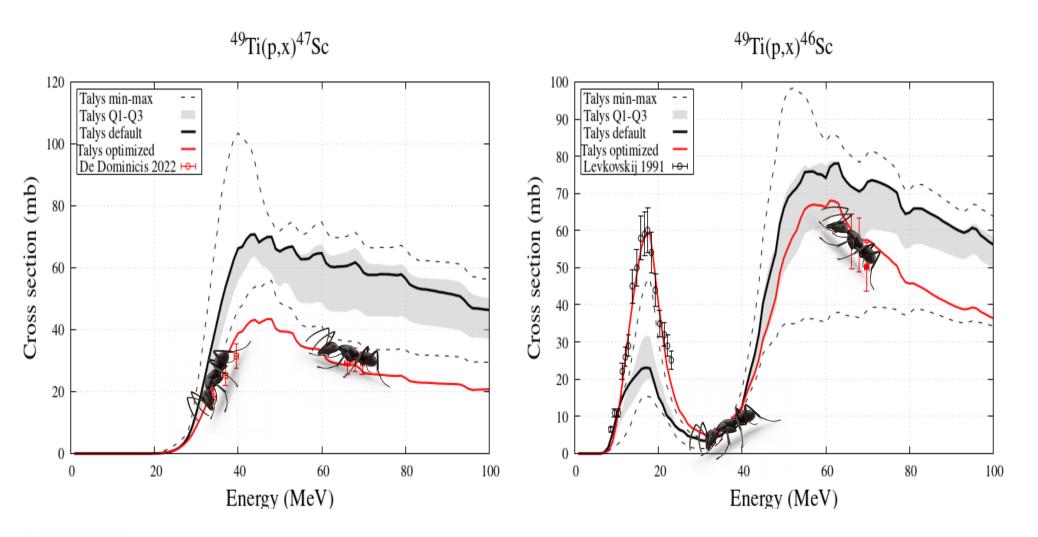
PE 5 → Geometry Dependent Hybrid (GDH) model

 $LD 4 \rightarrow Microscopic Hartree-Fock Nuclear Level Densities$

(Skyrme Force, Goriely's tables)

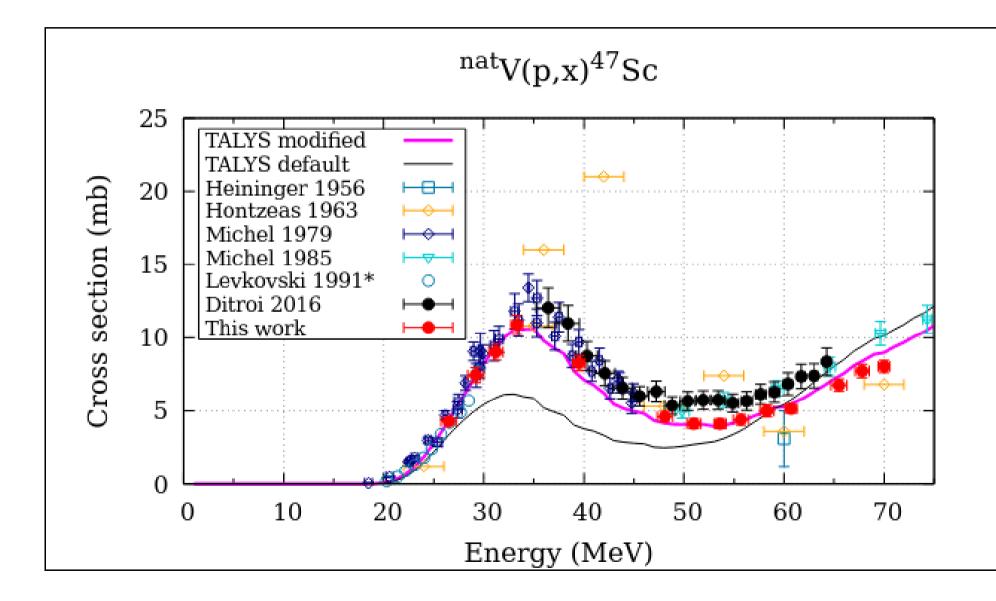

$$\rho(E) = \exp(c\sqrt{E-p})\rho(E-p)$$

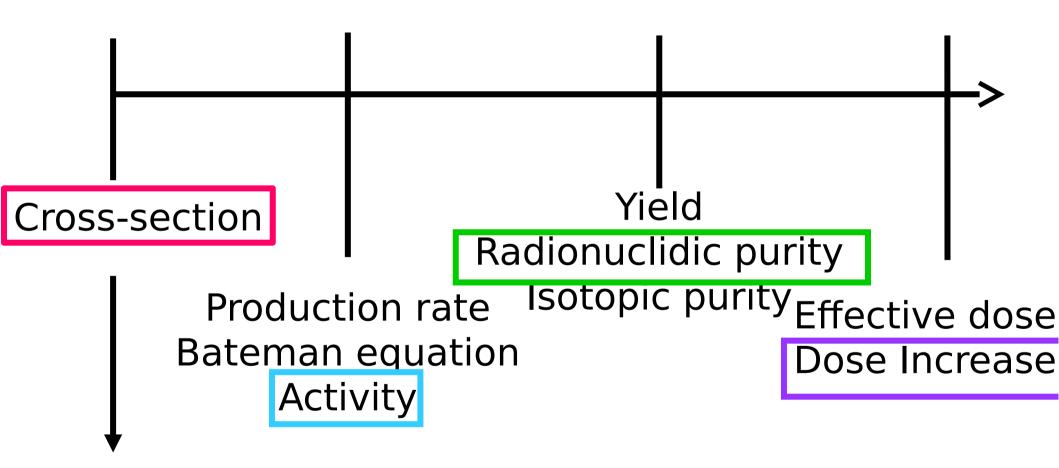
OPTIMIZATION


 Based on Genetic Algorithms Multiparameter optimization for all related measured cross sections Sc(43,44g,44m,46,47,48); K(42,43);
 V(48)

Genetic Algorithms

Genetic Algorithm: optimization inspired by Darwin's theory of natural evolution. Codifica del problema in "cromosomi"


⁴⁹Ti – Genetic Algoritm for NLD


A A

Preliminary REMIX data not yet validated and not public.

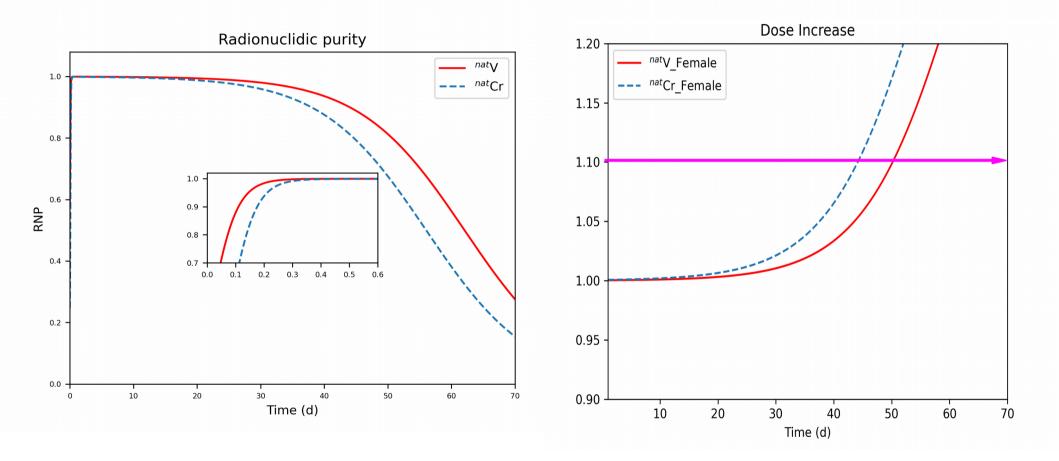
Previous experience with Vnat targets Phys Rev C 2021

Path to assess the production route

nuclear reaction codes supported by nuclear data

Path to assess the production route (depends on irradiation conditions)

European Pharmacopoeia requires a radionuclidic purity (RNP) greater than **99%**


$$\mathsf{RNP} = \frac{A_{52gMn}}{\sum_i A_i}$$

^{52g}Mn case

Dose Increase (DI) caused by the impurities should be maintained within the **10% limit**

$$\boldsymbol{DI} = \frac{ED_t(t)}{ED_{52gMn}}$$

Path to assess the 2 production routes (52gMn case)

Conclusion: Nucl Tecn (2022) and arXiv:2204.00402 natV(alpha,x)52gMn is more efficient than natCr(p,x)52gMn

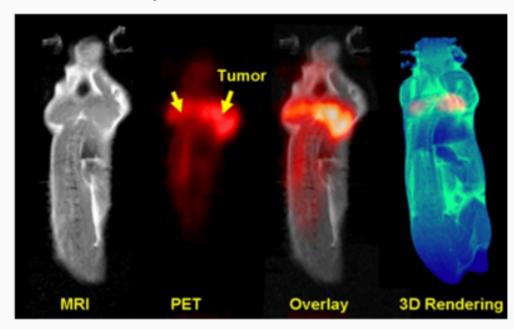
Conclusions

- Radiopharmaceutical production is a very interdisciplinary project involving Nuclear Science and Nuclear Data for medical applications.
- Nuclear modeling (cross sections, rates, activities, purities, etc) is an important aspect together with nuclear experiments and technology.
- So far, we have assessed and compared production routes including analysis of co-produced contaminants.
- ⁴⁷Sc: ^{nat}V(p,x), ⁵⁰Ti(p,x), ⁴⁹Ti(p,x) [?]. Moderate production feasible.
- ^{52g}Mn: ^{nat}Cr(p,x), ^{nat}V(alpha,x): better V targets than Cr.
- ^{117m}Sn: ^{nat}Cd(alpha,x), ^{nat}In(alpha,x): better In than Cd.
- Next ¹⁵⁵Tb : potentially producible with hospital cyclotrons ¹⁵⁵Gd(p,n)
- Societal impact:

this type of research could lead to new lifesaving methods in the future.

For 1h irradiation

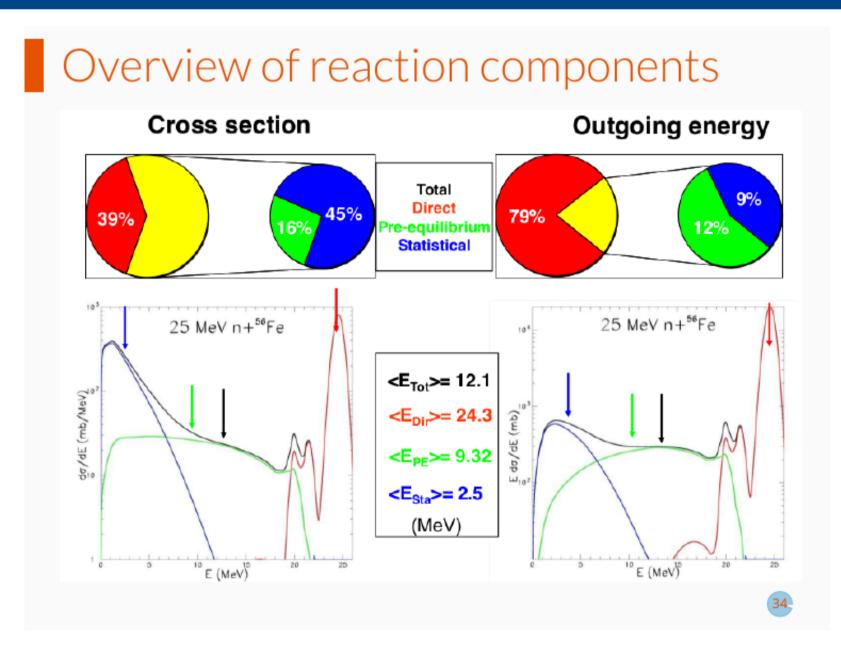
Target	Energy Range	47Sc (MBq/μA)	46Sc (MBq/μA)
50Ti	~ 10-20	~ 5	1.1E-4
natV	~ 20-30	~ 1.0 - 1.5	6.0E-4
49Ti	~ 30-40	~ 20	0.13
		Por il momento escluso - 2	anuca della


NO

Per il momento escluso, a causa della produzione del contaminante secondario 48-Sc, e non solo...

Multimodal pET/mRi Imaging with Cyclotron-produced ^{52/51}Mn and stable paramagnetic Mn iSotopes

PET and MRI fusion


A breakthrough in **Multi-Modal Imaging** (MMI) diagnostic procedures may be achieved with a genuine fusion between PET/SPECT and MRI analyses. However that could be obtained only by using both a radioactive and contrast agent based upon the same chemical compound.

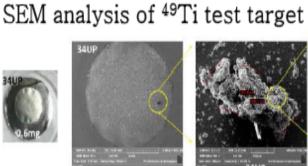
With the recent achievements in PET/MRI scanner technology, the use of radio-manganese, a manganese compound (i.e. a mixture of ^{52g}Mn and ⁵¹Mn), may enable future dual modal imaging techniques, having both properties for MRI and PET.

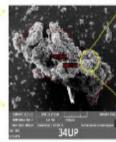
Feasibility study: INFN project METRICS (CSN5).

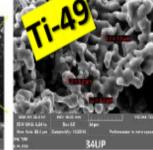
Nuclear reaction theory: phenomenology

The problem to work with enriched targets!

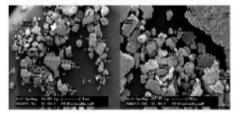
Less tan 0.5 gram (49Ti & 50Ti) **27,3 Keuro**

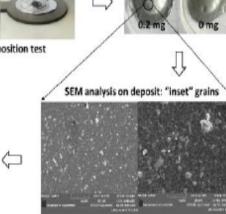

HIVIPP method works with metal powders.. but we received metal **Sponges** of ⁴⁹Ti and ⁵⁰Ti ! •




A. Skliarova, LNL

HIVIPP test


Manual test with liquid N₂ to reduce the grains of ⁴⁹Ti into metal powder; HIVIPP deposition and analysis:



HIVIPP deposition test

SEM powder analysis after the test: "flat" flakes

The positive outcomes encouraged the use of a cryomill, that is able to apply a multidirectional effect on the powder, thanks to a mechanical and vibrational movement.

