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▸ From an observational standpoint, a wide range of dark 
matter masses are consistent with data. 

▸ Focused on WIMP largely from arguments based on EFT
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▸ From an observational standpoint, a wide range of dark 
matter masses are consistent with data. 

▸ Our discussion will focus on extending the window of 
observability by 12 OOM in mass utilizing collective 
excitations in materials 

▸ Why look there? 
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▸ Similar argument as to WIMP based on EFT reasoning 

▸ Dark matter abundance is related to SM interactions
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▸ Similar argument as to WIMP based on EFT reasoning 

▸ Dark matter abundance is related to SM interactions
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▸ Heavier dark matter: setting relic abundance through 
interactions with Standard Model is challenging (NB: 
exceptions) 

▸ At heavier masses, detection through Standard Model 
interactions is (generally) not motivated by abundance
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DETECTABLE INTERACTION RATES

▸ Direct detection searches accordingly focused on weak 
scale 10 Direct Detection Program Roadmap 39
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013
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DARK MATTER DETECTION: A FULL COURT PRESS

▸  Abundance may still be set by (thermal) population from 
SM sector
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CROSSING SYMMETRY

▸ Utilize DM Abundance and crossing symmetry as guide 
for interaction rates
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FIG. 5: Sample processes considered in this section to detect DM, �. Top left: DM-nucleus
scattering. Top middle: DM-electron scattering. Top right: DM-nucleus scattering with emission
of a photon. Bottom left: Absorption by an electron of a bosonic DM particle (a vector A0, scalar
�, or pseudoscalar a). Bottom middle: Absorption by an electron of a bosonic DM particle, made
possible by emission of a phonon �. Bottom right: Emission of multiple phonons in DM scattering
o↵ helium.

2. Ideas to Probe Low-Mass Dark Matter

Over the past decade, several strategies have been proposed that maximize the energy
transfer to the target. In some cases this is at the expense of a modest rate suppression,
but this is at least partially o↵set by the larger DM particle flux expected as m� is lowered.
These interactions include:

• DM-Electron Scattering (1 keV – 1 GeV): For low-mass DM elastic scattering
(Fig. 5, top middle), the DM energy is transferred far more e�ciently to an electron
than to a nucleus [48]. If the DM is heavier than the electron, the maximum energy
transfer is equal to the DM kinetic energy,

Ee 
1

2
m�v2

� . 3 eV
⇣ m�

MeV

⌘
. (10)

Bound electrons with binding energy �EB can thus in principle produce a measurable
signal for

m� & 0.3 MeV ⇥
�EB

1 eV
. (11)

This allows low-mass DM to produce ionized excitations in drift chambers (�EB ⇠

10 eV) for m� & 3 MeV [48, 90, 91], to promote electrons from the valence band to the
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FIG. 3. Sensitivity to DM scattering via an ultralight dark
photon, for kg-yr exposure on GaAs. On the orange line the
relic abundance can be explained by freeze-in [19–21]. The
reach for mX < MeV is from scattering into LO phonons.
For mX > MeV, the reach comes from considering GaAs as a
scintillator for DM-electron scattering [10]. The blue region
indicates stellar and BBN constraints [22, 57], while the green
region is a Xenon10 limit [7]. Projections for various exper-
imental proposals are from Refs. [24, 28, 58] (dotted lines).

Scalar-mediated nucleon scattering. Finally we
consider the case of sub-MeV DM with coupling to nu-
cleons only, similar to what was explored in Ref. [26, 27]
for multiphonon production in superfluid helium. GaAs
improves over helium for several reasons: first, DM can
scatter by exciting a single ⇠ 36 meV optical phonon,
rather than going through higher-order multiphonon in-
teractions. Second, the speed of sound is ⇠ 20 times
higher in GaAs, such that the energy of acoustic phonons
is higher and better matched to DM kinematics.

The di↵erential DM scattering rate is

d2�

dqd!
=

4⇡

Vcell

q

mXpi
S(q, !), (9)

where pi is the initial DM momentum, Vcell is the primi-
tive cell volume, and S(q, !) is the dynamical structure
factor, defined in the same way as for neutron scattering
(see e.g. [59]). In the long-wavelength limit, S(q, !) is
given by

S(q, !) =
1

2

X

⌫

|F⌫(q)|2
!⌫,q

�(!⌫,q�!) (10)

where ⌫ sums over the various phonon branches. The
phonon form factor is

|F⌫(q)|2 =

�����
X

d

b̄dp
md

e�Wd(q)
q · e⌫,d,qe�iq·rd

�����

2

(11)

where d sums over atoms in the primitive cell with mass
md and position rd. b̄d is the scattering length, e⌫,d,q is

FIG. 4. Sensitivity of GaAs to scattering o↵ nucleons via a
scalar mediator, with kg-yr exposure. We consider the pro-
jected reach due to production of LO phonons (! = !LO ⇡ 36
meV) and that due to production into LA phonons as well,
with an even lower threshold ! > meV. Also shown is the
reach from multiphonon production in superfluid helium [26].

the phonon eigenvector of branch ⌫ and atom d at mo-
mentum q, and Wd the Debye-Waller factor of atom d.
Summing over the phonon eigenmodes requires a dedi-
cated software tool; we reserve this and a derivation of
Eq. (10) for future work [29].

Here we estimate the rate in the isotropic and long-
wavelength limit where Wd ⇡ 0:

|F⌫(q)|2 ⇡ b̄2
n

2mn

q2

���
p

AGae
irGa·q ±

p
AAse

irAs·q
���
2

(12)

with mn the nucleon mass, b̄n the DM-nucleon scatter-
ing length and AGa (AAs) the mass number of Ga (As).
The + (�) sign applies to the LA (LO) branch, where
both atoms are in phase (anti-phase). For a rough esti-
mate when mX ⌧ MeV, the phase factors in (12) can be
neglected.

For scattering via a massless mediator, we also in-
clude a (mXv0/q)4 form factor and express the reach
in terms of the cross section per nucleon at a reference
qref = mXv0, �n ⌘ 4⇡[b̄n(qref)]2. The result is shown in
Fig. 4, where we find a competitive reach with superfluid
helium. The astrophysical and cosmological constraints
on this scenario are rather tight but model dependent
and hence not shown; see Refs. [22, 23] for details. The
large di↵erence in sensitivity for the optical and acoustic
modes is due to the near cancellation in (12) for the op-
tical modes, since AGa ⇡ AAs. The phase factor in (12)
also induces a directional dependence for producing op-
tical phonons, which we will explore in future work [29].
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COLLECTIVE PHENOMENA IN MATERIALS
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BEYOND BILLIARD BALL SCATTERING

▸ Nuclear recoil-based direct detection 

▸ Nuclei, at least for high enough energy deposition, can 
typically be treated as free, and their kinematics is 
classical

ED =
q2

2mN

qmax = 2mXv

v ⇠ 10�3cq, ED
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LOOKING BEYOND BILLIARD BALLS

𝜒 
DM

| i 〉 → | f 〉 
crystal lattice

p

(q,!)
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• If only one of the constituent particles p, n, e is responsible for the transitions |ii ! |fi,

S(q,!) is DM model independent. Otherwise it depends on ratios (but not the overall

strength) of the couplings f0
p , f

0
n, f

0
e .

• For any given DM mass m� and incoming velocity v, only a slice in the (q,!) space, ! = !q,

is probed in the scattering process. The parabolic boundary of kinematic region for each m�

in Fig. 1 is the envelope of these slices for all v directions for fixed magnitude of v.

Finally, to obtain the total rate per target mass, we average over the DM’s initial velocity,

multiply by the number of DM particles in the detector, and divide by the detector mass, giving

R =
1

⇢T

⇢�

m�

Z
d
3
v f�(v)�(v) , (16)

where ⇢T is the target mass density, ⇢� is the local DM energy density, and f� is the DM’s velocity

distribution in the target rest frame. A common choice for f� is a truncated Maxwell-Boltzmann

(MB) distribution boosted by the Earth’s velocity with respect to the galactic rest frame,

f
MB
� (v) =

1

N0
e
�(v+ve)2/v20 ⇥

�
vesc � |v + ve|

�
, (17)

N0 = ⇡
3/2

v
2
0

"
v0 erf

�
vesc/v0

�
�

2 vesc
p
⇡

exp
�
�v

2
esc/v

2
0

�
#
. (18)

In the calculations presented in this paper, we take ⇢� = 0.4GeV/cm3, v0 = 230 km/s, vesc =

600 km/s, ve = 240 km/s.

In addition to the total rate, it is often useful to know the di↵erential rate with respect to

the energy deposition onto the target !. This simply requires inserting delta functions into the

integrals to pick out the contributions with ! = !q:

d�

d!
=

⇡�

µ2

Z
d
3
q

(2⇡)3
F

2
med(q)S

�
q,!q

�
�
�
! � !q

�
, (19)

dR

d!
=

1

⇢T

⇢�

m�

Z
d
3
v f�(v)

d�

d!
. (20)

To summarize, we have the following algorithm for computing the rate for a given detection

channel.

• First, identify the initial and final states |ii, |fi according to the type of excitation.

• Next, quantize FT (q) in terms of the relevant degrees of freedom such that it acts on the

target Hilbert space to induce the transitions |ii ! |fi.



LOOKING BEYOND BILLIARD BALLS
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where M stands for M�n or M�e. We can further factor out the q dependence of M, which can

only come from the mediator propagator for tree-level scattering:

M(q) = M(q0)Fmed(q) , (11)

Fmed(q) =

8
><

>:

1 (heavy mediator),

(q0/q)2 (light mediator).
(12)

The reference momentum transfer is conventionally chosen to be q0 = m�v0 (with v0 the DM’s

velocity dispersion) for DM-neutron scattering, and q0 = ↵me for DM-electron scattering.

The factorization in Eq. (10) is a key component of the formalism. From the target-independent

particle-level matrix element M, we define the reference cross sections:

�n ⌘
µ
2
�n

⇡
|M�n(q0)|2q0=m�v0

, �e ⌘
µ
2
�e

⇡
|M�e(q0)|2q0=↵me

, (13)

where µ denotes the reduced mass. These coincide with the total cross sections of DM-neutron

and DM-electron scattering in the heavy mediator case. On the other hand, FT is target specific,

from which we define the dynamic structure factor:4

S(q,!) ⌘
1

V

X

f

��hf |FT (q)|ii
��2 2⇡�

�
Ef � Ei � !

�
, (14)

which encapsulates response of the target to DM couplings to the proton, neutron and electron.

Combining the two parts, we have

�(v) =
⇡�

µ2

Z
d
3
q

(2⇡)3
F

2
med(q)S

�
q,!q

�
, (15)

where �̄, µ, again, denote either �̄n, µ�n or �̄e, µ�e.

Let us highlight the following regarding the dynamic structure factor S(q,!).

• S(q,!) captures the target’s response to an energy-momentum deposition (q,!).

• S(q,!) depends on the distribution of constituent particles p, n, e in the target system via

enp, enn, ene, which in turn depends on the nucleus types and electron wavefunctions. It is

therefore target material specific.

• S(q,!) also depends on the active degrees of freedom in the target system via the choice

of |fi, which in turn determines how FT (q) should be quantized. It is therefore excitation

(detection channel) specific.

4 Here we adopt a slightly di↵erent normalization convention compared to Ref. [45]. The right hand side of Eq. (14)

here is identified with 2⇡
⌦ S(q,!) in Ref. [45], where ⌦ is the primitive cell volume.
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where M stands for M�n or M�e. We can further factor out the q dependence of M, which can

only come from the mediator propagator for tree-level scattering:

M(q) = M(q0)Fmed(q) , (11)

Fmed(q) =

8
><

>:

1 (heavy mediator),

(q0/q)2 (light mediator).
(12)

The reference momentum transfer is conventionally chosen to be q0 = m�v0 (with v0 the DM’s

velocity dispersion) for DM-neutron scattering, and q0 = ↵me for DM-electron scattering.

The factorization in Eq. (10) is a key component of the formalism. From the target-independent

particle-level matrix element M, we define the reference cross sections:

�n ⌘
µ
2
�n

⇡
|M�n(q0)|2q0=m�v0

, �e ⌘
µ
2
�e

⇡
|M�e(q0)|2q0=↵me

, (13)

where µ denotes the reduced mass. These coincide with the total cross sections of DM-neutron

and DM-electron scattering in the heavy mediator case. On the other hand, FT is target specific,

from which we define the dynamic structure factor:4

S(q,!) ⌘
1

V

X

f

��hf |FT (q)|ii
��2 2⇡�

�
Ef � Ei � !

�
, (14)

which encapsulates response of the target to DM couplings to the proton, neutron and electron.

Combining the two parts, we have

�(v) =
⇡�

µ2

Z
d
3
q

(2⇡)3
F

2
med(q)S

�
q,!q

�
, (15)

where �̄, µ, again, denote either �̄n, µ�n or �̄e, µ�e.

Let us highlight the following regarding the dynamic structure factor S(q,!).

• S(q,!) captures the target’s response to an energy-momentum deposition (q,!).

• S(q,!) depends on the distribution of constituent particles p, n, e in the target system via

enp, enn, ene, which in turn depends on the nucleus types and electron wavefunctions. It is

therefore target material specific.

• S(q,!) also depends on the active degrees of freedom in the target system via the choice

of |fi, which in turn determines how FT (q) should be quantized. It is therefore excitation

(detection channel) specific.

4 Here we adopt a slightly di↵erent normalization convention compared to Ref. [45]. The right hand side of Eq. (14)

here is identified with 2⇡
⌦ S(q,!) in Ref. [45], where ⌦ is the primitive cell volume.

For summary of theoretical formalism, including nuclear 
recoils, electrons, collective excitations, see 1910.08092

Dynamic Structure Factor
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Lighter and less free



LIGHTER TARGETS FOR LIGHTER DARK MATTER — ELECTRONS
3

of outgoing electrons are found by numerically solving
the radial Schrödinger equation with a central potential
Ze↵(r)/r. Ze↵(r) is determined from the initial electron
wavefunction, assuming it to be a bound state of the same
central potential. We evaluate the form-factors numeri-
cally, cutting o↵ the sum at large l

0
, L once it converges.

Only the ionization rates of the 3 outermost shells (5p,
5s, and 4d, with binding energies of 12.4, 25.7, and 75.6
eV, respectively) are found to be relevant.

The energy transferred to the primary ionized electron
by the initial scattering process is ultimately distributed
into a number of (observable) electrons, ne, (unobserved)
scintillation photons, n� , and heat. To calculate ne, we
use a probabilistic model based on a combined theoreti-
cal and empirical understanding of the electron yield of
higher-energy electronic recoils. Absorption of the pri-
mary electron energy creates a number of ions, Ni, and
a number of excited atoms, Nex, whose initial ratio is
determined to be Nex/Ni ⇡ 0.2 over a wide range of ener-
gies above a keV [18, 19]. Electron–ion recombination ap-
pears well-described by a modified Thomas-Imel recombi-
nation model [20, 21], which suggests that the fraction of
ions that recombine, fR, is essentially zero at low energy,
resulting in ne = Ni and n� = Nex. The fraction, fe,
of initial quanta observed as electrons is therefore given
by fe = (1 � fR)(1 + Nex/Ni)�1

⇡ 0.83 [21]. The total
number of quanta, n, is observed to behave, at higher
energy, as n = Eer/W , where Eer is the outgoing energy
of the initial scattered electron and W = 13.8 eV is the
average energy required to create a single quanta [23].
As with fR and Nex/Ni, W is only well measured at en-
ergies higher than those of interest to us, and thus adds
to the theoretical uncertainty in the predicted rates. We
use Nex/Ni = 0.2, fR = 0 and W = 13.8 eV to give
central limits, and to illustrate the uncertainty we scan
over the ranges 0 < fR < 0.2, 0.1 < Nex/Ni < 0.3,
and 12.4 < W < 16 eV. The chosen ranges for W and
Nex/Ni are reasonable considering the available data
[9, 18, 19, 22]. The chosen range for fR is conserva-
tive considering the fit of the Thomas-Imel model to low-
energy electron-recoil data [20].

We extend this model to DM-induced ionization as fol-
lows. We calculate the di↵erential single-electron ion-
ization rate following Eqs. (1–3). We assume the scat-
tering of this primary electron creates a further n

(1) =
Floor(Eer/W ) quanta. In addition, for ionization of the
next-to-outer 5s and 4d shells, we assume that the pho-
ton associated with the de-excitation of the 5p-shell elec-
tron, with energy 13.3 or 63.1 eV, can photoionize, cre-
ating another n

(2) = 0 (1) or 4 quanta, respectively, for
W > 13.3 eV (< 13.3 eV). The total number of detected
electrons is thus ne = n

0
e + n

00
e , where n

0
e represents the

primary electron and is thus 0 or 1 with probability fR

or (1 � fR), respectively, and n
00
e follows a binomial dis-

tribution with n
(1) + n

(2) trials and success probability
fe. This procedure is intended to reasonably approxi-
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FIG. 2: Top: Expected signal rates for 1-, 2-, and 3-electron
events for a DM candidate with �e = 10�36 cm2 and FDM = 1.
Widths indicate theoretical uncertainty (see text). Bottom:
90% CL limit on the DM–electron scattering cross section
�e (black line). Here the interaction is assumed to be in-
dependent of momentum transfer (FDM = 1). The dashed
lines show the individual limits set by the number of events
in which 1, 2, or 3 electrons were observed in the XENON10
data set, with gray bands indicating the theoretical uncer-
tainty. The light green region indicates the previously allowed
parameter space for DM coupled through a massive hidden
photon (taken from [2]).

mate the detailed microscopic scattering processes, but
presents another O(1) source of theoretical uncertainty.
The 1-, 2-, and 3-electron rates as a function of DM mass
for a fixed cross section and FDM = 1 are shown in Fig. 2
(top). The width of the bands arises from scanning over
fR, Nex/Ni and W , as described above, and illustrates
the theoretical uncertainty.

RESULTS. Fig. 2 (bottom) shows the exclusion limit in
the mDM-�e plane based on the upper limits for 1-, 2-,
and 3-electrons rates in the XENON10 data set (dashed
lines), and the central limit (black line), corresponding
to the best limit at each mass. The gray bands show the
theoretical uncertainty, as described above. This bound
applies to DM candidates whose non-relativistic inter-
action with electrons is momentum-transfer independent
(FDM = 1). For DM masses larger than ⇠15MeV, the
bound is dominated by events with 2 or 3 electrons, due
to the small number of such events observed in the data
set. For smaller masses, the energy available is insu�-
cient to ionize multiple electrons, and the bound is set
by the number of single-electron events. The light green
shaded region shows the parameter space spanned by

Prospects for Upcoming DM–Electron Scattering Searches
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Figure 1. Selected near-term projections for the
DAMIC (green curves) and SuperCDMS-silicon (dark
red curves) experiments, for different ionization thresh-
olds and (background-free) exposures, as indicated. Solid
curves show the 95% C.L. exclusion reach from sim-
ple counting searches, while dashed curves show the
5�-discovery reach from annual modulation searches.
The gray shaded region shows the current XENON10
bound [31], while the shaded green region shows the es-
timated (much weaker) bound from 2012 DAMIC data
with a ⇠11-electron-hole pair threshold. The projections
for SuperCDMS-germanium (not shown) are comparable
to silicon. See §6.5 for more details. The three plots show
results for the different indicated DM form factors, corre-
sponding to different DM models.

expands on the previous calculation in [9]. Higher recoil energies for the scattered electron allow
a larger number of additional electron-hole pairs to be promoted via secondary scattering. Using
a semi-empirical understanding of these secondary scattering processes, we convert our calculated
differential event rate to an estimated event rate as a function of the number of observed electron-hole
pairs. These results will allow several experimental collaborations, such as DAMIC and SuperCDMS,
to calculate their projected sensitivity to the DM-electron scattering cross-section, given their specific
experimental setups and thresholds. It will also allow them to derive limits on this cross section in the
absence of a signal, or the preferred cross section value should there be a signal, in forthcoming data.

– 4 –

Essig et al 1509.01598

P. Sorensen et al 1206.2644

▸ In insulators, like xenon 

▸ In semi-conductors, like Ge, Si

Tightly bound; ionize for signal

Excite electron to conduction band

Gap = DM Kinetic Energy

ED =
q2

2me

qmax = 2mXv



EXCITATION OF ELECTRONIC STATES BY DARK MATTER

3 Electronic Transition Rates

We now present the DM-induced electron transition rate calculation. We begin with a
general discussion and then in Secs. 3.1-3.4 consider the four different transition types in
turn: valence to conduction (v ! c), valence to free (v ! f), core to conduction (c ! c) and
core to free (c ! f). Finally, in Sec. 3.5 we discuss the treatment of in-medium screening.

The general derivation has been discussed previously (see e.g. Refs. [2, 5, 10, 15, 50]),
and we repeat it here for completeness and clarity, as a variety of conventions have been
used. Beginning with Fermi’s Golden Rule, the transition rate between electronic states
|i, si and |f, s

0
i due to scattering with an incoming non-relativistic DM particle, �, with

mass m�, velocity v, and spin � is given by

�i,s,�!f,s0,�0(v) = 2⇡V

Z
d
3
q

(2⇡)3
��hp0

,�
0; f, s0| �Ĥ |p,�; i, si

��2 �(Ef,s0 � Ei,s � !q) , (3.1)

where |p,�; i, si = |p,�i ⌦ |i, si, q is the momentum deposited onto the target, p = m�v,
p0 = p � q, �Ĥ is the interaction Hamiltonian, V is total volume of the target, and !q is
the energy deposition:

!q =
1

2
m�v

2
�

(m�v � q)2

2m�
= q · v �

q
2

2m�
. (3.2)

We assume that all quantum states are unit normalized. Modulo in-medium screening
effects, discussed below in Sec. 3.5, we can write Eq. (3.1) in terms of the standard QFT
matrix element, defined with plane wave incoming and outgoing states, by inserting =

V
P

s

R
d3k
(2⇡)3 |k, sihk, s| and using

hp0
,�

0;k0
, s

0
| �Ĥ |p,�;k, si ⌘

(2⇡)3

V 2

M�0s0�s(p0
,k0

,p,k)

4mem�
�
(3)

�
p0 + k0

� p � k
�
. (3.3)

We find

�i,s,�!f,s0,�0(v) =
2⇡

16V m2
em

2
�

Z
d
3
q

(2⇡)3
�(Ef,s0 � Ei,s � !q)

⇥

����
Z

d
3
k

(2⇡)3
M�0s0�s(p � q,k + q,p,k) e ⇤

f (k + q) e i(k)

����
2

, (3.4)

where e i(k) =
p
V hk|ii.

We will limit our analysis to matrix elements which only depend on q, and assume
that the electron energy levels are also spin independent, which allows the spin sums to be
easily computed:

�i!f ⌘
1

2

X

�,�0

X

s,s0

�i,s,�!f,s0,�0

=
4⇡

16V m2
em

2
�

Z
d
3
q

(2⇡)3
|M(q)|2 |fi!f |

2
� (Ef � Ei � !q) , (3.5)

fi!f ⌘

Z
d
3
k

(2⇡)3
e ⇤
f (k + q) e i(k) =

Z
d
3
x e

iq·x
 
⇤
f (x) i(x) , (3.6)
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𝜒 
DM

| i 〉 → | f 〉 
crystal lattice

p

(q,!)
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Figure 7. Calculated electronic band structures of targets in Table I.

For summary of theoretical formalism, see 1910.08092



DM-ELECTRON DETECTION RATE CALCULATOR

▸ Codes are publicly available — see 2105.05253 

▸ exceed-dm.caltech.edu 

▸ EXtended Calcuation of Electronic Excitation for 
Direct detection of Dark Matter 

▸ Contains repository for rate calculator  

▸ Only code to include all-electron wavefunctions for silicon 
and germanium (allows reconstruction of higher 
momentum components of valence states), as well as core 
states 

▸ Manual coming soon

http://exceed-dm.caltech.edu


“Phonons

Power of Collective Excitations



EXCITING COLLECTIVE MODES

▸ Once momentum transfer drops below an keV, deBroglie wavelength 
is longer than the inter particle spacing in typical materials 

▸ Therefore, relevant d.o.f. in target are no longer individual nuclei or 
ions 

▸ Must coarse grain to describe DM coupling to “collective excitations” 

▸ Collective excitations = phonon modes, spin waves (magnons) 

▸ Can be applied to just about any material  

▸ Details depend on  

▸ 1) nature of collective modes in target material  

▸ 2) nature of DM couplings to target Schutz, KZ 1604.08206, Hochberg, Lin, KZ 
1604.06800, Knapen, Lin, KZ 1611.06228, 
Knapen, Lin, Pyle, KZ 1712.06598 Griffin, 
Knapen, Lin, KZ 1807.10291



LOOKING BEYOND BILLIARD BALLS

𝜒 
DM

| i 〉 → | f 〉 
crystal lattice

p

(q,!)
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where M stands for M�n or M�e. We can further factor out the q dependence of M, which can

only come from the mediator propagator for tree-level scattering:

M(q) = M(q0)Fmed(q) , (11)

Fmed(q) =

8
><

>:

1 (heavy mediator),

(q0/q)2 (light mediator).
(12)

The reference momentum transfer is conventionally chosen to be q0 = m�v0 (with v0 the DM’s

velocity dispersion) for DM-neutron scattering, and q0 = ↵me for DM-electron scattering.

The factorization in Eq. (10) is a key component of the formalism. From the target-independent

particle-level matrix element M, we define the reference cross sections:

�n ⌘
µ
2
�n

⇡
|M�n(q0)|2q0=m�v0

, �e ⌘
µ
2
�e

⇡
|M�e(q0)|2q0=↵me

, (13)

where µ denotes the reduced mass. These coincide with the total cross sections of DM-neutron

and DM-electron scattering in the heavy mediator case. On the other hand, FT is target specific,

from which we define the dynamic structure factor:4

S(q,!) ⌘
1

V

X

f

��hf |FT (q)|ii
��2 2⇡�

�
Ef � Ei � !

�
, (14)

which encapsulates response of the target to DM couplings to the proton, neutron and electron.

Combining the two parts, we have

�(v) =
⇡�

µ2

Z
d
3
q

(2⇡)3
F

2
med(q)S

�
q,!q

�
, (15)

where �̄, µ, again, denote either �̄n, µ�n or �̄e, µ�e.

Let us highlight the following regarding the dynamic structure factor S(q,!).

• S(q,!) captures the target’s response to an energy-momentum deposition (q,!).

• S(q,!) depends on the distribution of constituent particles p, n, e in the target system via

enp, enn, ene, which in turn depends on the nucleus types and electron wavefunctions. It is

therefore target material specific.

• S(q,!) also depends on the active degrees of freedom in the target system via the choice

of |fi, which in turn determines how FT (q) should be quantized. It is therefore excitation

(detection channel) specific.

4 Here we adopt a slightly di↵erent normalization convention compared to Ref. [45]. The right hand side of Eq. (14)

here is identified with 2⇡
⌦ S(q,!) in Ref. [45], where ⌦ is the primitive cell volume.
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only come from the mediator propagator for tree-level scattering:
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8
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1 (heavy mediator),

(q0/q)2 (light mediator).
(12)

The reference momentum transfer is conventionally chosen to be q0 = m�v0 (with v0 the DM’s

velocity dispersion) for DM-neutron scattering, and q0 = ↵me for DM-electron scattering.
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where µ denotes the reduced mass. These coincide with the total cross sections of DM-neutron

and DM-electron scattering in the heavy mediator case. On the other hand, FT is target specific,

from which we define the dynamic structure factor:4
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V

X

f
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�
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�
, (14)

which encapsulates response of the target to DM couplings to the proton, neutron and electron.
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Z
d
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F
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, (15)

where �̄, µ, again, denote either �̄n, µ�n or �̄e, µ�e.

Let us highlight the following regarding the dynamic structure factor S(q,!).

• S(q,!) captures the target’s response to an energy-momentum deposition (q,!).

• S(q,!) depends on the distribution of constituent particles p, n, e in the target system via

enp, enn, ene, which in turn depends on the nucleus types and electron wavefunctions. It is

therefore target material specific.

• S(q,!) also depends on the active degrees of freedom in the target system via the choice

of |fi, which in turn determines how FT (q) should be quantized. It is therefore excitation

(detection channel) specific.

4 Here we adopt a slightly di↵erent normalization convention compared to Ref. [45]. The right hand side of Eq. (14)

here is identified with 2⇡
⌦ S(q,!) in Ref. [45], where ⌦ is the primitive cell volume.

For summary of theoretical formalism, including nuclear 
recoils, electrons, collective excitations, see 1910.08092

Tabulates the (lattice) 
potential the incoming 
DM sees — which in 
turn depends on the 
collective modes in the 
material



LATTICE DEGREES OF FREEDOM

▸ Will focus on crystals that have lattice d.o.f.

DM DM

MagnonsPhonons

Acoustic

Optical



NATURE OF COLLECTIVE OSCILLATIONS OF IONS — PHONONS

▸ Number of collective modes: 
3 x number of ions in unit 
cell 

▸ 3 of those modes describe in 
phase oscillation — acoustic 
phonons — and have a 
translation symmetry 
implying gapless dispersion 

▸ The remaining modes are 
gapped
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FIG. 2. Phonon band structures for GaAs (left) and sapphire (right) as computed with phonopy [38]. The x-axis
traces out a path in the Brillouin zone. As is conventional in the condensed matter literature, the points in the
Brillouin zone with high symmetry are indicated with Roman and Greek characters (see Fig. 14 in Appendix A),
where � always refers to the origin of the Brillouin zone q = (0, 0, 0).

wave which stores a finite amount of energy.
A priori, the dark matter can excite both the optical and acoustic modes, but the energy deposited

in the acoustic modes is much smaller and is only detectable in the most optimistic circumstances.
Concretely, for mX . MeV, the DM momentum mXv . keV is sufficiently small that it is only possible
to excite a phonon mode within the first Brillouin zone. Consider a DM scattering with momentum
transfer q and energy deposition !, which excites a single acoustic phonon; the phonon must absorb
all of the energy and momentum transferred. This leads to the scaling

! = cs |q| . 2 cs v mX ⇠ 7 meV ⇥
mX

100 keV
. (1)

with v ⇠ 10�3 the DM velocity and assuming the speed of sound for sapphire. The threshold for near
future devices will be at best in the 10 � 100 meV range, which means that single acoustic phonon
excitations from light DM will be difficult or impossible to detect, depending on mX . However, the
scaling in (1) does not apply for the optical modes since they have an energy of ! ⇠ 30 meV or more
as |q| ! 0, as is evident from Fig. 2.

The gapped dispersion of optical phonons is a particularly appealing feature, as it allows nearly the
maximum amount of DM kinetic energy to be extracted in the scattering, even when the momentum
transfer is much less than a keV. This is in contrast to recoils off free nuclei, where the energy deposited
from light DM is much less than the initial DM kinetic energy. The presence of optical phonons is also
advantageous compared to a material such as superfluid helium. Superfluid helium does have gapped
quasiparticle excitations (rotons), but they only occur at high q and are much lower energy that
the optical phonons in a solid. Since single phonon production in superfluid helium is undetectable
in the foreseeable future, one must resort to multi-phonon production to break the relation in (1),
as was demonstrated in Refs. [30, 31]. However, the rate is suppressed since this is a higher order

7

Momentum transfer

Knapen, Lin, Pyle, KZ 1712.06598 Griffin, Knapen, Lin, KZ 1807.10291

Acoustic

Optical



▸ Some materials have an 
abundance of these modes 

▸ When these gapped modes 
result from oscillations of 
more than one type of ion, it 
sets up an oscillating dipole: 
Polar Materials 

▸ This oscillating dipole allows 
to compute an effective 
interaction and compute the 
dynamic structure factor

NATURE OF COLLECTIVE OSCILLATIONS OF IONS — PHONONS
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FIG. 2. Phonon band structures for GaAs (left) and sapphire (right) as computed with phonopy [38]. The x-axis
traces out a path in the Brillouin zone. As is conventional in the condensed matter literature, the points in the
Brillouin zone with high symmetry are indicated with Roman and Greek characters (see Fig. 14 in Appendix A),
where � always refers to the origin of the Brillouin zone q = (0, 0, 0).

wave which stores a finite amount of energy.
A priori, the dark matter can excite both the optical and acoustic modes, but the energy deposited

in the acoustic modes is much smaller and is only detectable in the most optimistic circumstances.
Concretely, for mX . MeV, the DM momentum mXv . keV is sufficiently small that it is only possible
to excite a phonon mode within the first Brillouin zone. Consider a DM scattering with momentum
transfer q and energy deposition !, which excites a single acoustic phonon; the phonon must absorb
all of the energy and momentum transferred. This leads to the scaling

! = cs |q| . 2 cs v mX ⇠ 7 meV ⇥
mX

100 keV
. (1)

with v ⇠ 10�3 the DM velocity and assuming the speed of sound for sapphire. The threshold for near
future devices will be at best in the 10 � 100 meV range, which means that single acoustic phonon
excitations from light DM will be difficult or impossible to detect, depending on mX . However, the
scaling in (1) does not apply for the optical modes since they have an energy of ! ⇠ 30 meV or more
as |q| ! 0, as is evident from Fig. 2.

The gapped dispersion of optical phonons is a particularly appealing feature, as it allows nearly the
maximum amount of DM kinetic energy to be extracted in the scattering, even when the momentum
transfer is much less than a keV. This is in contrast to recoils off free nuclei, where the energy deposited
from light DM is much less than the initial DM kinetic energy. The presence of optical phonons is also
advantageous compared to a material such as superfluid helium. Superfluid helium does have gapped
quasiparticle excitations (rotons), but they only occur at high q and are much lower energy that
the optical phonons in a solid. Since single phonon production in superfluid helium is undetectable
in the foreseeable future, one must resort to multi-phonon production to break the relation in (1),
as was demonstrated in Refs. [30, 31]. However, the rate is suppressed since this is a higher order
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KINEMATICS OF COLLECTIVE MODES

▸ Each phonon mode is a resonance.  The DM needs to be 
well matched kinematically to the modes to excite large 
response 

▸ Better coupling to gapped modes
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FIG. 2. Phonon band structures for GaAs (left) and sapphire (right) as computed with phonopy [38]. The x-axis
traces out a path in the Brillouin zone. As is conventional in the condensed matter literature, the points in the
Brillouin zone with high symmetry are indicated with Roman and Greek characters (see Fig. 14 in Appendix A),
where � always refers to the origin of the Brillouin zone q = (0, 0, 0).
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future devices will be at best in the 10 � 100 meV range, which means that single acoustic phonon
excitations from light DM will be difficult or impossible to detect, depending on mX . However, the
scaling in (1) does not apply for the optical modes since they have an energy of ! ⇠ 30 meV or more
as |q| ! 0, as is evident from Fig. 2.

The gapped dispersion of optical phonons is a particularly appealing feature, as it allows nearly the
maximum amount of DM kinetic energy to be extracted in the scattering, even when the momentum
transfer is much less than a keV. This is in contrast to recoils off free nuclei, where the energy deposited
from light DM is much less than the initial DM kinetic energy. The presence of optical phonons is also
advantageous compared to a material such as superfluid helium. Superfluid helium does have gapped
quasiparticle excitations (rotons), but they only occur at high q and are much lower energy that
the optical phonons in a solid. Since single phonon production in superfluid helium is undetectable
in the foreseeable future, one must resort to multi-phonon production to break the relation in (1),
as was demonstrated in Refs. [30, 31]. However, the rate is suppressed since this is a higher order
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OPTICAL PHONONS IN POLAR MATERIALS

Single Optical Phonon, Single Acoustic Phonon

Polar Materials: Lin, Knapen, Pyle, KZ 1612.06598

Griffin, Inzani, Trickle, Zhang, KZ, 1910.10716
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Figure 1. Projected reach from single phonon excitations (dashed) and electron transitions (solid) for DM scattering mediated
by a kinetically mixed light dark photon (the smallest-gap target InSb su↵ers from slow convergence in the electronic transition
calculation at m� < 1MeV, for which we show results of the two most accurate runs with solid and dotted curves, see
Appendix A 1 for details). Nuclear recoils (not shown) can also probe this model, but the conclusion on which targets are
superior is the same as for the light hadrophilic mediator model. A detector threshold of 1meV is used for the phonon
calculations, and all transitions with energy deposition greater than the band gaps are included in electron excitations. The
freeze-in benchmark is taken from Refs. [12, 80], corrected by including plasmon decay for sub-MeV DM [81]. Stellar constraints
are from Ref. [82] and direct detection constraints are from DAMIC [61], DarkSide-50 [83], SENSEI [62], SuperCDMS [68],
XENON10 [14, 21], and XENON100 [83, 84].2

est optical mode,3

m�,min ⇠ 3 keV

✓
!O

10meV

◆
. (24)

Thus materials having low energy optical phonon modes
are desirable to search for light dark matter; CsI, for
example, has particularly low-lying optical phonon exci-
tations, and its sensitivity to the lightest DM masses is
seen in Fig. 1.
We can also see that at higher masses, single optical

phonon production rates vary widely between materials.
This can be understood analytically. Consider first the

3One has to be careful with this estimate, as the lowest optical mode
is generally not the dominant mode, rather it is the mode which
is most “longitudinal,” or maximizes q · ✏. For simple diatomic
materials, there is one precisely longitudinal mode in the low q
limit, but the same is not true for more complex materials such as
Al2O3, as many gapped modes have a longitudinal component. A
general rule of thumb is that the highest energy optical mode is the
most longitudinal.

simplest case of a diatomic polar crystal (e.g. GaAs).
The dominant contribution to the q integral in Eq. (20)
is well within the 1BZ and therefore we can set G = 0,
Wj ' 0, and g(q,!) / q�1. Approximating Z⇤

j
' Z⇤

j
1,

and noting that Z⇤
1
= �Z⇤

2
⌘ Z⇤, we see that the rate

is dominated by the longitudinal optical (LO) mode, for
which one can show ✏LO,k,1 and ✏LO,k,2 are anti-parallel,
and |✏LO,k,j | =

p
µ12/mj in the limit k ! 0, where µ12 is

the reduced mass of the two ions. Further approximating
the phonon dispersion as constant and "1 ' "1 1, the
rate simplifies to

R /
q4
0

mcell

⇢�
m�

�e

"21!LO

Z⇤2

µ2
�e
µ12

log

✓
m�v20
!LO

◆

/
Z⇤2

A1A2"21

✓
meV

!LO

◆
⌘ Q . (25)

We call Q a quality factor, since it is the combination
of material-specific quantities that determines the direct
detection rate. A higher-Q material has a better reach



DIRECTIONALITY IN ANISOTROPIC MATERIALS!

▸ Crystal Lattice is not Isotropic 

▸ Especially pronounced in certain 
materials, like sapphire

some point to have a number on hand]) The orientation is illustrated in Fig. 5, where ✓e is
the angle between the Earth’s axis and the direction of its velocity and ✓lab gives the latitude at
which the experiment is constructed. We choose the crystal orientation and coordinate system
such that the z-axis is aligned with the Earth’s velocity at t = 0. For GaAs the crystal axis is
along one for the faces of the cubic lattice, while for sapphire it is the axis along which the Al
atoms are positioned (Fig. 3) [TL: Instead, just show all xyz directions on the figure
of the crystals for GaAs and sapphire. Possible to make the statement that the
dipole coupling is largest along the primary crystal axis?].

Since we explicitly orient the crystal relative to the dark matter wind, there is no dependence
of the DM flux or scattering rate on the latitude at which the experiment is located. As a
function of time, the unit vector of ve in the crystal coordinate frame is

v̂e =

0

B@
sin ✓e sin �

sin ✓e cos ✓e(cos � � 1)

cos
2
✓e + sin

2
✓e cos �

1

CA (10)

with � = 2⇡ ⇥ t/24h the angle parametrizing the rotation of the Earth around its axis.

ve

Earth axis of  
rotation

t=0�e

Cygnus
�e ~ 42°	

DEC ~ 48°

Celestial  
equator

crystal axis

�lab

�lab

crystal axist=1/2 day

FIG. 5. The setup assumed in our calculation of DM scattering with the crystal. At t = 0, the z-axis of

the crystal coordinate system is aligned with the Earth’s velocity ve. With this choice, the modulation

is independent of the position of the lab, indicated by ✓lab. The Earth’s velocity is approximately in

the direction of Cygnus, which is at an angle of ✓e ⇡ 42
� relative to the Earth’s axis of rotation. We

also illustrate the orientation of the crystal after a half-day rotation.

12

FIG. 7. Mode 30 (left), mode 16 (center) and mode 4 (right), which dominate the scattering for

(dark) photon mediator processes at long wavelengths. Modes 30 and 16 are characterized by a large

oscillation dipole of the Al (gray) and O (red) atoms respectively. Mode 4 exhibits two large dipoles

from the Al atoms, oscillating in anti-phase. Adobe Acrobat is required to view this animation.
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FIG. 8. Modulation of the scattering rate of the dominant optical phonon modes over a sidereal day,

for different DM masses. The percentage in the legend indicates the weight of the mode in the total

rate, after excluding the acoustic modes.
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▸ Crystal Lattice is not Isotropic 

▸ Especially pronounced in certain 
materials, like sapphire

DIRECTIONALITY IN ANISOTROPIC MATERIALS!
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Figure 5. Top: Projected reach for the dark photon mediator model assuming 1meV and 20 meV energy thresholds, one
kg-year exposure. Solid curves show the 95% C.L. exclusion limits in the case of zero observed events, assuming no background.
Dashed curves and the associated ±1� bands show the cross sections for which we can reject the non-modulating hypothesis and
establish the statistical significance of a modulating signal, as explained in App. B. Bottom: Daily modulation amplitudes,
defined in Eq. (15), for the same energy thresholds for selected DM masses. Results are shown only for m� values where a
material has substantial reach and fmod > 10�2.

icant impact on either the reach or the daily modula-
tion amplitude, except at the lowest m� values. This
is because gapped optical phonons dominate the rate as
long as the DM is heavy enough to excite them. For the
hadrophilic scalar mediator models (Figs. 6 and 7), on the
other hand, acoustic phonons dominate and, as a result,
both the reach and the daily modulation amplitude are
sensitive to !min. Generally, a higher energy threshold
tends to amplify the daily modulation since the kinemati-
cally accessible phase space becomes limited, as discussed
in detail in Sec. II B 1. Similarly, the daily modulation
amplitude tends to increase at the lowest m� considered
because of phase space restrictions. The enhanced daily
modulation in these cases of course comes at the price of
a lower total rate, so there is a trade-o↵ between better
overall sensitivity and a higher daily modulation signal.
This is reflected by the dashed modulation reach curves
in the top panels of each figure, which ascend at lower

masses since the rate also vanishes.

From Figs. 5, 6 and 7, we see that hBN consistently
outperforms all other materials in terms of the daily mod-
ulation amplitude, which reaches O(1) for some m� and
!min values. This is due to the layered crystal structure
which means that the momentum transfers perpendicu-
lar and parallel to the layers lead to very di↵erent target
responses. Among the other materials, Al2O3, CaWO4

and SiC are also competitive targets for the dark photon
mediator model at m� . 100 keV, and CaWO4 shows
percent level daily modulation across a wide range of DM
masses for the heavy scalar mediator model.

[ZZ: ] [AC: Text between this comment and the

“conclusions” part is more recently written due to

new findings, therefore has been through a fewer

number of passes. A more careful scrutiny of this

part (including the caption of Fig. 8) is recom-

mended.] [KZ: Discussion needs to be substan-



DM - COLLECTIVE MODE EFT

▸ Match relativistic ops onto non-relativistic ops 

▸ Match NR ops onto lattice d.o.f. 

▸ Compute DM excitation rates

(Trivial for SI interactions)

(Provided by Frohlich Hamiltonian or dynamic structure 
factor computed)

(Straightforward once one understands the (inelastic) 
kinematics of the system)

See Trickle, Zhang, KZ 2009.13534
Trickle, Zhang, KZ, Griffin, Inzani 1910.08092

Griffin, Inzani, Trickle, Zhang, KZ 1910.10716



DM - COLLECTIVE MODE EFT See Trickle, Zhang, KZ 2009.13534
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Lagrangian Term Coupling Type (E↵ective) Current ! NR Limit

gS� ̄ Scalar JS =  ̄ ! 1

gP� ̄i�5 Pseudoscalar JP =  ̄i�5 ! �
iq
m 

· S 

gV Vµ ̄�µ Vector Jµ
V =  ̄�µ 

!

⇣
1 , K

2m 
�

iq
m 

⇥ S 
⌘

gAVµ ̄�µ�5 Axial vector Jµ
A =  ̄�µ�5 

!

⇣
K
m 

· S , 2S 
⌘

gedm

4m 
Vµ⌫ ̄�µ⌫i�5 Electric dipole Jµ

edm = 1
2m 

@⌫
�
 ̄�µ⌫i�5 

�

!

⇣
�

iq
m 

· S , i!
m 

S + iq
m 

⇥
�

K
2m 

⇥ S 
�⌘

gmdm

4m 
Vµ⌫ ̄�µ⌫ Magnetic dipole Jµ

mdm = 1
2m 

@⌫
�
 ̄�µ⌫ 

�

!

⇣
iq
m 

·
�

K
2m 

⇥ S 
�

�
q2

4m2
 
, �

iq
m 

⇥ S 
⌘

gana

4m2
 
(@⌫Vµ⌫)

�
 ̄�µ�5 

�
Anapole Jµ

ana = �
1

4m2
 
(gµ⌫@2 � @µ@⌫)

�
 ̄�⌫�5 

�

! �
q2

4m2
 
Jµ
A +

� q
m 

· S 
� qµ

2m 

gV 2

4m2
 
(@⌫Vµ⌫)

�
 ̄�µ 

�
Vector (O(q2)) Jµ

V 2 = �
1

4m2
 
@2

�
 ̄�µ 

�
! �

q2

4m2
 
Jµ
V

TABLE I. Types of couplings between a spin- 12 fermion  and a scalar (vector) mediator � (Vµ). The

(e↵ective) currents are defined by L � gX�JX (X = S, P ) or gXVµJ
µ
X (X = V,A, edm,mdm, ana, V 2), upon

integration by parts in the last four cases. The expressions following the arrows are the leading operators in

the NR reduction of the currents (assuming scattering kinematics), which appear between the nonrelativistic

fields  � and  + — see e.g. Eq. (9). These will be used to derive the NR operators generated by specific

DM models involving tree-level exchange of a scalar or vector mediator in Table II.

To demonstrate the procedure of matching a relativistic model onto the NR EFT, we focus

on tree level DM scattering mediated by a spin-0 or abelian spin-1 particle, denoted by � and Vµ

respectively. While it should be kept in mind that the EFT is capable of describing a broader class

of models, including e.g. loop-mediated scattering, we find it useful to organize our thinking by

categorizing mediator couplings to fermion bilinears. In Table I, we list the commonly considered

types of couplings at the level of the relativistic Lagrangian, and their NR limits. We explain the

table in detail in the following two paragraphs.

For a spin-0 mediator �, we consider its couplings to the scalar and pseudoscalar currents JS ,

JP . For a spin-1 mediator Vµ, we consider both minimal coupling to the vector and axial-vector



DM - COLLECTIVE MODE EFT
11

Model UV Lagrangian NR EFT Responses

Standard SI
�
�
g�JS,� + g JS, 

�
or

c( )
1 =

g�g
eff
 

q2+m2
�,V

N
Vµ

�
g�J

µ
V,� � g J

µ
V, 

�

Standard SD a Vµ

�
g�J

µ
A,� + g J

µ
A, 

�
c( )
4 =

4g�g 
q2+m2

V
S

Other

scalar

mediators

P⇥ S �
�
g�JP,� + g JS, 

�
c( )
11 =

m 

m�

g�g
eff
 

q2+m2
�

N

S⇥P �
�
g�JS,� + g JP, 

�
c( )
10 = � g�g 

q2+m2
�

S

P⇥P �
�
g�JP,� + g JP, 

�
c( )
6 =

m 
m�

g�g 
q2+m2

�
S

Multipole

DM

models

Electric dipole Vµ

⇣
g�J

µ
edm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘
c( )
11 = �m 

m�

g�g
eff
 

q2+m2
V

N

Magnetic dipole Vµ

⇣
g�J

µ
mdm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘

c( )
1 = q2

4m2
�

g�g
eff
 

q2+m2
V

N, S, L

c( )
4 = eµ q2

m�m 

g�g 
q2+m2

V

c( )
5a =

m 

m�

g�g
eff
 

q2+m2
V

c( )
5b =

m 

m�

g�g 
q2+m2

V

c( )
6 = �eµ 

m 

m�

g�g 
q2+m2

V

Anapole Vµ

⇣
g�J

µ
ana,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘
c( )
8a = q2

2m2
�

g�g
eff
 

q2+m2
V

N, S, Lc( )
8b = q2

2m2
�

g�g 
q2+m2

V

c( )
9 = �eµ q2

2m2
�

g�g 
q2+m2

V

(L · S)-interacting Vµ

�
g�J

µ
V,� + g (J

µ
mdm, + Jµ

V 2, )
�

c( )
1 = (1 + ) q2

4m2
 

g�g 
q2+m2

V

N,S, L⌦ S
c( )
3a = c( )

3b =
g�g 

q2+m2
V

c( )
4 = q2

m�m 

g�g 
q2+m2

V

c( )
6 = �m 

m�

g�g 
q2+m2

V

a Heavy mediator only.

TABLE II. Benchmark models of spin- 12 DM � coupling to SM fermions  = p, n, e. For each model, the

leading order nonvanishing coe�cients c( )i for the NR EFT operators O
( )
i (defined in Table III) are listed

in the second to last column. ge↵ are the screened couplings defined in Eq. (14), and eµ = 1 + �eµ is half

the Landé g-factor of  (eµp ' 2.8, eµn ' �1.9, eµe ' 1). The last column lists the lattice degrees of freedom

which enter the scattering potential, Eq. (27). All models can excite phonons, and models with S or L

response generated by DM-electron coupling can also excite magnons.

O1 and O4, respectively.5 Other types of scalar mediators generate O6, O10 and O11. A well-

motivated class of (hidden sector) models contain DM particles coupling to a vector mediator via a

5 Note that the standard SD interaction cannot be realized with a light mediator. In that case the leading interaction

is induced by longitudinal vector exchange, and is proportional to JP,�JP, rather than Jµ
A,�JA, µ.

See Trickle, Zhang, KZ 2009.13534



“Magnons

Access to Spin-Dependent Interactions



SPIN-DEPENDENT INTERACTIONS

▸ Some types of particle interactions have dominant 
interactions with spin 

▸ Collective (electron) spin-waves = magnons 

▸ Magnetically ordered materials (ferro- or ferri-magnets)

2

Magnetic dipole DM L =
g�
⇤�

�̄�µ⌫�Vµ⌫ + geē�
µe Vµ Ô

↵
� =

4g�ge
⇤�me

�
�↵�

�
q↵q�

q2

�
Ŝ�
� �̄e =

g2�g2e
⇡

6m2
�+m2

e

⇤2
�(m�+me)2

Anapole DM L =
g�
⇤2
�
�̄�µ�5�@⌫Vµ⌫ + geē�

µe Vµ Ô
↵
� =

2g�ge
⇤2
�me

✏↵��iq�Ŝ�
� �̄e =

g2�g2e
⇡

3↵2µ2
�e

2⇤4
�

Pseudo-mediated DM L = g��̄��+ geē i�
5e� Ô

↵
� = �

g�ge
q2me

iq↵1� �̄e =
g2�g2e
4⇡

µ2
�e

↵2m4
e

TABLE I. Dark matter models with SD interactions considered in this work. � is a spin-1/2 DM particle, and V , � are
ultralight (typically ⌧ eV) spin-1, spin-0 mediators, respectively. Ô

↵
� (with ↵ = 1, 2, 3 denoting the Cartesian coordinates) is

the nonrelativistic operator that couples to the electron spin, as defined in Eq. (4). q ⌘ |q| is the momentum transfer, and
Ŝ↵
� = �↵/2 is the DM spin operator. �e is the reference cross section defined in Eq. (11) that we will use to present the reach.

Here l, l
0 label the magnetic unit cells, and j, j

0 label the
magnetic atoms/ions inside the unit cell. Depending on
the sign of the exchange coupling Jll0jj0 , the spins Slj

and Sl0j0 tend to align or anti-align. The low energy ex-
citations are obtained by applying the Holstein-Primako↵
transformation to expand the spins around the ordered
ground state in terms of bosonic creation and annihila-
tion operators â†, â. The quadratic part of the Hamilto-
nian can then be diagonalized via a Bogoliubov transfor-
mation (see Appendix for details),

 
âj,k

â
†
j,�k

!
=

 
Uj⌫,k Vj⌫,k

V⇤
j⌫,�k U⇤

j⌫,�k

! 
b̂⌫,k

b̂
†
⌫,�k

!
, (2)

H =
nX

⌫=1

X

k21BZ

!⌫,kb̂
†
⌫,kb̂⌫,k , (3)

so that b̂†, b̂ are creation and annihilation operators of the
canonical magnon modes, which are collective excitations
of the spins. For a system with N magnetic unit cells
and n magnetic atoms/ions in the unit cell, there are n

magnon branches, labeled by ⌫, with N modes on each
branch, labeled by momentum vectors k within the first
(magnetic) Brillouin zone (1BZ). The n⇥ n matrices U,
V can be calculated for each k.

Magnon excitation from dark matter scattering — If
the DM couples to the electron spin,1 it can scatter o↵ the
target material and create magnon excitations. Suppose
the nonrelativistic e↵ective Lagrangian takes the form

L = �

3X

↵=1

Ô
↵
�(q)Ŝ

↵
e , (4)

where ↵ denotes the Cartesian coordinates, and q is the
momentum transfer from the DM to the target. The
operators Ô� for the three DM models we consider are

1
The spins in the lattice model may also contain orbital angular

momentum components. In that case, deriving the DM-lattice

spin coupling requires a careful matching calculation, which we

leave for future work. Here we assume negligible orbital angular

momentum, noting that this is the case for many familiar mate-

rials where 3d electrons are responsible for the magnetic order.

listed in Table I. Focusing on transitions from the ground
state to single magnon states |⌫,ki, we obtain the matrix
element as (see Appendix for details)

M
sisf
⌫,k (q) = �q,k+G

1
p
N⌦

3X

↵=1

hsf |Ô
↵
�(q)|sii ✏

↵
⌫,k,G , (5)

where ⌦ is the volume of the magnetic unit cell, G de-
notes a reciprocal lattice vector, and |si,f i are the initial
and final DM spin states. ✏⌫,k,G is the analog of polar-
ization vectors for the magnon modes,
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where r↵j ⌘ R
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j parameterize the spin orientations
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and xj ⌘ xlj �xl is the position of the jth site within a
magnetic unit cell. As a simple example, a ferromagnet
with one magnetic ion per unit cell (n = 1) has r =
(1, i, 0), U = 1, V = 0, and thus, ✏ =

p
S/2 (1, i, 0) for

all k and G, reminiscent of a photon polarization vector.
From Eq. (5) we see that for any given q, only the

magnon modes with a definite momentum k within the
1BZ that satisfies q = k + G, for some G, can be ex-
cited, as a consequence of lattice momentum conserva-
tion. Summing over sf and averaging over si, we obtain
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where ⇢̂� = 1

2S�+112S�+1 is the density matrix for the

spin of the incoming DM. The total event rate per unit
target mass R is then obtained as

R =
1

⇢T

⇢�

m�

Z
d
3
v� f(v�)

X

⌫

X

k21BZ

�⌫,k(v�) , (9)

�⌫,k(v�) = 2⇡
X

q=k+G

|M⌫,k(q)|2 �
�
E�i � E�f � !⌫,k

�
,

(10)

Trickle, Zhang, KZ 1905.13744

Zhengkang “Kevin” Zhang (UC Berkeley) Fermilab/KICP, Jun. 2019

Magnons: what they are and how they couple to DM

❖ Technically, we need to expand the spins in terms of bosonic creation/annihilation 
operators via the Holstein-Primakoff transformation…

❖ … and then diagonalize the Hamiltonian via a Bogoliubov transformation…

15

where

global coordinates local coordinates (ground state spin points in +z direction)

canonical magnon modes
(quanta of collective precession patterns)



SPIN-DEPENDENT INTERACTIONS

▸ Classic example: YIG (Y3Fe5O12) 

▸ 20 magnetic ions in the unit cell —> 20 magnon branches

Trickle, Zhang, KZ 1905.13744

Zhengkang “Kevin” Zhang (UC Berkeley) Fermilab/KICP, Jun. 2019

Projected reach
❖ We consider a yttrium iron garnet (YIG, Y3Fe5O12) target.

17

Magnon dispersion calculated by including up to 3rd nearest 
neighbor exchange couplings taken from: Cherepanov, 
Kolokolov, L’vov, Physics Reports 229, 81 (1993).

❖ 20 magnetic ions Fe3+ (spin 5/2) in the unit cell => 20 magnon branches.
❖ Anti-ferromagnetic exchange couplings. Ground state: 12 up, 8 down.
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FIG. 2. Calculated magnon dispersion of YIG along the high symmetry lines in the first Brillouin zone.

diagonalizing the quadratic Hamiltonian (corresponding to the leading terms in the 1/S expansion) by a Bogoliubov
transformation,

âlj =
1

p
N

X

k21BZ

âj,ke
ik·xlj , (A.3)
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Uj⌫,k Vj⌫,k
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!
, (A.4)

where xlj is the position of the jth site in the lth unit cell, we arrive at the free magnon Hamiltonian Eq. (3),

H =
nX

⌫=1

X

k21BZ

!⌫,kb̂
†
⌫,kb̂⌫,k , (A.5)

where b
†
⌫,k, b̂⌫,k are creation and annihilation operators for the canonical magnon modes. The canonical commutators

are preserved, [b̂⌫,k, b̂
†
⌫0,k0 ] = �⌫⌫0�kk0 , by imposing the following constraint,
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!
. (A.6)

We follow the algorithm in Ref. [51] to solve the constrained diagonalization problem to obtain !⌫,k, Tk. Note that
Ref. [51] uses a di↵erent Fourier transformation convention, with xl rather than xlj in the exponent of Eq. (A.3).
We have consistently followed our convention throughout the calculation, adjusting the equations in Ref. [51] where
necessary. In Fig. 2, we plot our calculated magnon dispersion !⌫,k for YIG along the high symmetry lines in the
(body-centered cubic) 1BZ generated using the SeeK-path code [57].

Next, we derive the single magnon production matrix element Eq. (5) from the DM-electron spin coupling Eq. (4).
Assuming the absence of orbital angular momentum, a magnetic atom/ion at site l, j sources an e↵ective scattering
potential for the incoming DM, which is given by the Fourier transform of the momentum space operator,
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Z
d
3
q

(2⇡)3

X

↵

Ô
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For a DM particle with incoming momentum p and outgoing momentum p0 = p� q, and a transition �i ! �f in the
target system, the matrix element is
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MAGNON COLLECTIVE EXCITATIONS

▸ Magnons are sensitive to spin-dependent couplings

Trickle, Zhang, KZ 1905.13744
See Trickle, Zhang, KZ 2009.13534
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Interaction Type NR Operators Crystal Response
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�

TABLE III. NR e↵ective operators relevant for DM scattering defined in Eq. (11), organized into four

categories, and the crystal responses generated. Here � is the DM and  is a SM particle that can be the

proton, neutron or electron. q is the momentum transfer from the DM to the SM target, and v�, v are

defined in Eq. (13). Previous calculations [33, 34, 53, 54, 57] focused on phonon and magnon excitations via

v -independent couplings to charge and spin, corresponding to the first two categories listed here. In this

work we extend the calculations to all operators.

if the operator is velocity-independent. On the other hand, v -dependent operators are expected

to couple DM to the motion of  particles inside an ion, manifest as the total orbital angular

momenta hL i and spin-orbit couplings hL ⌦ S i, which are “composite” degrees of freedom.

In the rest of this subsection, we will see concretely how these intuitive expectations are borne
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↵
� = �

g�ge
q2me

iq↵1� �̄e =
g2�g2e
4⇡

µ2
�e

↵2m4
e

TABLE I. Dark matter models, having Lagrangian L, with SD interactions considered in this work; these models are particularly
well-motivated when DM does not carry a charge of any type, see e.g. Refs. [33, 35–45]. � is a spin-1/2 DM particle, and
V , � are ultralight (typically ⌧ eV) spin-1, spin-0 mediators, respectively. g�, ge are dimensionless couplings, and ⇤� is the
e↵ective theory cuto↵. In the nonrelativistic limit, these Lagrangians reduce to the operators Ô

↵
� (with Cartesian coordinates

↵ = 1, 2, 3), as in Eq. (4). q ⌘ |q| is the momentum transfer, and Ŝ↵
� = �↵/2 is the DM spin operator. �e is the reference cross

section defined in Eq. (11) that we will use to present the reach.

kinetic energy and Pauli exclusion (see e.g. Refs. [46, 47]).
Such systems are usually described by a spin lattice
model, e.g. the Heisenberg model,

H =
1

2

NX

l,l0=1

nX

j,j0=1

Jll0jj0 Slj · Sl0j0 . (1)

Here l, l
0 label the magnetic unit cells, and j, j

0 label the
magnetic atoms/ions inside the unit cell. Depending on
the sign of the exchange coupling Jll0jj0 , the spins Slj

and Sl0j0 tend to align or anti-align. The low energy ex-
citations are obtained by applying the Holstein-Primako↵
transformation to expand the spins around the ordered
ground state in terms of bosonic creation and annihila-
tion operators â†, â. The quadratic part of the Hamilto-
nian can then be diagonalized via a Bogoliubov transfor-
mation (see the Supplemental Material for details),

 
âj,k

â
†
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, (2)

H =
nX

⌫=1

X

k21BZ

!⌫,kb̂
†
⌫,kb̂⌫,k , (3)

so that b̂†, b̂ are creation and annihilation operators of the
canonical magnon modes, which are collective excitations
of the spins. For a system with N magnetic unit cells
and n magnetic atoms/ions in the unit cell, there are n

magnon branches, labeled by ⌫, with N modes on each
branch, labeled by momentum vectors k within the first
(magnetic) Brillouin zone (1BZ). The n⇥ n matrices U,
V can be calculated for each k.

Magnon excitation from dark matter scattering — If
the DM couples to the electron spin, it can scatter o↵ the
target material and create magnon excitations.1 Suppose

1
Magnons can also be excited via couplings to orbital angular mo-

menta. Here we assume negligible orbital angular momenta for

simplicity, noting that this is the case for many familiar materials

where 3d electrons are responsible for the magnetic order.

the nonrelativistic e↵ective Lagrangian takes the form

L = �

3X

↵=1

Ô
↵
�(q)Ŝ

↵
e , (4)

where ↵ denotes the Cartesian coordinates, and q is the
momentum transfer from the DM to the target. The op-
erators Ô� that follow from the three Lagrangians we
consider are listed in Table I. Focusing on transitions
from the ground state to single magnon states |⌫,ki, we
obtain the matrix element as (see the Supplemental Ma-
terial for details)

M
sisf
⌫,k (q) = �q,k+G

1
p
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3X

↵=1

hsf |Ô
↵
�(q)|sii ✏

↵
⌫,k,G , (5)

where ⌦ is the volume of the magnetic unit cell, G de-
notes a reciprocal lattice vector, and |si,f i are the initial
and final DM spin states. ✏⌫,k,G is the analog of polar-
ization vectors for the magnon modes,

✏⌫,k,G =
nX

j=1

r
Sj
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�
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⇤
j +U⇤
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where r↵j ⌘ R
↵1
j +iR

↵2
j parameterize the spin orientations

in the ground state,

S
↵
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R
↵�
j S

0�
lj , {hS

01
lj i, hS

02
lj i, hS

03
lj i} = {0, 0, Sj} ,

(7)
and xj ⌘ xlj �xl is the position of the jth site within a
magnetic unit cell. As a simple example, a ferromagnet
with one magnetic ion per unit cell (n = 1) has r =
(1, i, 0), U = 1, V = 0, and thus, ✏ =

p
S/2 (1, i, 0) for

all k and G, reminiscent of a photon polarization vector.
From Eq. (5) we see that for given q, only the magnon

modes with k 2 1BZ satisfying q = k + G for some G
can be excited, due to lattice momentum conservation.
Summing over sf and averaging over si, we obtain

|M⌫,k(q)|2 =
�q,k+G

N⌦2
tr
�
⇢̂�Ô

↵
�(q)Ô

†�
� (q)

�
✏
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(8)



MAGNON COLLECTIVE EXCITATIONS

▸ Magnons are sensitive to spin-dependent couplings 

▸ Need to work out how coupling to spin excites individual 
magnon modes 

▸ Need magnetic material to have non-zero spin expectation 
value over unit cell 

▸ Expand in Holstein-Primakoff bosons, diagonalize 
Hamiltonian

Trickle, Zhang, KZ 1905.13744
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TABLE I. Dark matter models, having Lagrangian L, with SD interactions considered in this work; these models are particularly
well-motivated when DM does not carry a charge of any type, see e.g. Refs. [33, 35–45]. � is a spin-1/2 DM particle, and
V , � are ultralight (typically ⌧ eV) spin-1, spin-0 mediators, respectively. g�, ge are dimensionless couplings, and ⇤� is the
e↵ective theory cuto↵. In the nonrelativistic limit, these Lagrangians reduce to the operators Ô

↵
� (with Cartesian coordinates

↵ = 1, 2, 3), as in Eq. (4). q ⌘ |q| is the momentum transfer, and Ŝ↵
� = �↵/2 is the DM spin operator. �e is the reference cross

section defined in Eq. (11) that we will use to present the reach.

kinetic energy and Pauli exclusion (see e.g. Refs. [46, 47]).
Such systems are usually described by a spin lattice
model, e.g. the Heisenberg model,
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0 label the magnetic unit cells, and j, j

0 label the
magnetic atoms/ions inside the unit cell. Depending on
the sign of the exchange coupling Jll0jj0 , the spins Slj

and Sl0j0 tend to align or anti-align. The low energy ex-
citations are obtained by applying the Holstein-Primako↵
transformation to expand the spins around the ordered
ground state in terms of bosonic creation and annihila-
tion operators â†, â. The quadratic part of the Hamilto-
nian can then be diagonalized via a Bogoliubov transfor-
mation (see the Supplemental Material for details),
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so that b̂†, b̂ are creation and annihilation operators of the
canonical magnon modes, which are collective excitations
of the spins. For a system with N magnetic unit cells
and n magnetic atoms/ions in the unit cell, there are n

magnon branches, labeled by ⌫, with N modes on each
branch, labeled by momentum vectors k within the first
(magnetic) Brillouin zone (1BZ). The n⇥ n matrices U,
V can be calculated for each k.

Magnon excitation from dark matter scattering — If
the DM couples to the electron spin, it can scatter o↵ the
target material and create magnon excitations.1 Suppose

1
Magnons can also be excited via couplings to orbital angular mo-

menta. Here we assume negligible orbital angular momenta for

simplicity, noting that this is the case for many familiar materials

where 3d electrons are responsible for the magnetic order.

the nonrelativistic e↵ective Lagrangian takes the form
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where ↵ denotes the Cartesian coordinates, and q is the
momentum transfer from the DM to the target. The op-
erators Ô� that follow from the three Lagrangians we
consider are listed in Table I. Focusing on transitions
from the ground state to single magnon states |⌫,ki, we
obtain the matrix element as (see the Supplemental Ma-
terial for details)
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notes a reciprocal lattice vector, and |si,f i are the initial
and final DM spin states. ✏⌫,k,G is the analog of polar-
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and xj ⌘ xlj �xl is the position of the jth site within a
magnetic unit cell. As a simple example, a ferromagnet
with one magnetic ion per unit cell (n = 1) has r =
(1, i, 0), U = 1, V = 0, and thus, ✏ =

p
S/2 (1, i, 0) for

all k and G, reminiscent of a photon polarization vector.
From Eq. (5) we see that for given q, only the magnon

modes with k 2 1BZ satisfying q = k + G for some G
can be excited, due to lattice momentum conservation.
Summing over sf and averaging over si, we obtain
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µe Vµ Ô
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TABLE I. Dark matter models, having Lagrangian L, with SD interactions considered in this work; these models are particularly
well-motivated when DM does not carry a charge of any type, see e.g. Refs. [33, 35–45]. � is a spin-1/2 DM particle, and
V , � are ultralight (typically ⌧ eV) spin-1, spin-0 mediators, respectively. g�, ge are dimensionless couplings, and ⇤� is the
e↵ective theory cuto↵. In the nonrelativistic limit, these Lagrangians reduce to the operators Ô
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� = �↵/2 is the DM spin operator. �e is the reference cross

section defined in Eq. (11) that we will use to present the reach.

kinetic energy and Pauli exclusion (see e.g. Refs. [46, 47]).
Such systems are usually described by a spin lattice
model, e.g. the Heisenberg model,
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Here l, l
0 label the magnetic unit cells, and j, j

0 label the
magnetic atoms/ions inside the unit cell. Depending on
the sign of the exchange coupling Jll0jj0 , the spins Slj

and Sl0j0 tend to align or anti-align. The low energy ex-
citations are obtained by applying the Holstein-Primako↵
transformation to expand the spins around the ordered
ground state in terms of bosonic creation and annihila-
tion operators â†, â. The quadratic part of the Hamilto-
nian can then be diagonalized via a Bogoliubov transfor-
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so that b̂†, b̂ are creation and annihilation operators of the
canonical magnon modes, which are collective excitations
of the spins. For a system with N magnetic unit cells
and n magnetic atoms/ions in the unit cell, there are n

magnon branches, labeled by ⌫, with N modes on each
branch, labeled by momentum vectors k within the first
(magnetic) Brillouin zone (1BZ). The n⇥ n matrices U,
V can be calculated for each k.

Magnon excitation from dark matter scattering — If
the DM couples to the electron spin, it can scatter o↵ the
target material and create magnon excitations.1 Suppose

1
Magnons can also be excited via couplings to orbital angular mo-

menta. Here we assume negligible orbital angular momenta for

simplicity, noting that this is the case for many familiar materials

where 3d electrons are responsible for the magnetic order.

the nonrelativistic e↵ective Lagrangian takes the form

L = �

3X

↵=1

Ô
↵
�(q)Ŝ

↵
e , (4)

where ↵ denotes the Cartesian coordinates, and q is the
momentum transfer from the DM to the target. The op-
erators Ô� that follow from the three Lagrangians we
consider are listed in Table I. Focusing on transitions
from the ground state to single magnon states |⌫,ki, we
obtain the matrix element as (see the Supplemental Ma-
terial for details)

M
sisf
⌫,k (q) = �q,k+G

1
p
N⌦

3X

↵=1

hsf |Ô
↵
�(q)|sii ✏

↵
⌫,k,G , (5)

where ⌦ is the volume of the magnetic unit cell, G de-
notes a reciprocal lattice vector, and |si,f i are the initial
and final DM spin states. ✏⌫,k,G is the analog of polar-
ization vectors for the magnon modes,

✏⌫,k,G =
nX

j=1

r
Sj

2

�
Vj⌫,�kr

⇤
j +U⇤

j⌫,krj
�
e
iG·xj , (6)

where r↵j ⌘ R
↵1
j +iR

↵2
j parameterize the spin orientations

in the ground state,

S
↵
lj =

X

�

R
↵�
j S

0�
lj , {hS

01
lj i, hS

02
lj i, hS

03
lj i} = {0, 0, Sj} ,

(7)
and xj ⌘ xlj �xl is the position of the jth site within a
magnetic unit cell. As a simple example, a ferromagnet
with one magnetic ion per unit cell (n = 1) has r =
(1, i, 0), U = 1, V = 0, and thus, ✏ =

p
S/2 (1, i, 0) for

all k and G, reminiscent of a photon polarization vector.
From Eq. (5) we see that for given q, only the magnon

modes with k 2 1BZ satisfying q = k + G for some G
can be excited, due to lattice momentum conservation.
Summing over sf and averaging over si, we obtain

|M⌫,k(q)|2 =
�q,k+G

N⌦2
tr
�
⇢̂�Ô

↵
�(q)Ô

†�
� (q)

�
✏
↵
⌫,k,G✏

⇤�
⌫,k,G ,

(8)

Spin -> Collective mode
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▸ Rather than depositing kinetic energy, entire mass energy 
can be absorbed. 

▸ How about 1-100 meV mass axions?
4

FIG. 1. Spectra of gapped phonon polaritons and magnons at zero momentum for several representative

targets considered in this work. These collective excitations have typical energies of O(1 - 100)meV, and can

be utilized to search for axion DM in the mass window ma ⇠ O(1 - 100)meV. Longer lines with darker colors

correspond to the resonances in Figs. 3, 4 and 5, while the shorter ones with lighter colors represent modes with

suppressed couplings to axion DM due to selection rules.

level axion interactions of interest are:

L = �
1

4
ga��aFµ⌫F̃

µ⌫ +
X

f=e,p,n

gaff

2mf
(@µa)(f̄�

µ
�
5
f)�

X

f=p,n

gaf�

4
aFµ⌫(f̄ i�

µ⌫
�
5
f) , (1)

where the three terms are the axion’s electromagnetic, wind and electric dipole moment (EDM)

couplings, respectively. In the nonrelativistic limit, the e↵ective interaction Hamiltonian is1

�Ĥ = �ga��

Z
d
3
x aE ·B �

X

f=e,p,n

gaff

mf
ra · sf �

X

f=p,n

gaf� aE · sf . (2)

These couplings can be further matched onto axion couplings to low energy degrees of freedom in a

crystal. In particular, phonon excitation results from couplings to atomic displacements ulj = xlj�x0

lj ,

where l labels the primitive cell, j labels the atoms within each cell, and x0

lj are the equilibrium

positions, while magnons can be excited via couplings to the (e↵ective) spins of magnetic ions Slj .

An axion field oscillating with frequency ! = ma and wavenumber p = mava is represented by

a(x, t) = a0 cos (p · x� !t) , (3)

where the field amplitude is related to the energy density via ⇢a = m
2
aa

2
0
/2. The resulting e↵ective

1 The coupling to the axial current also generates a term proportional to masf · vf , we neglect this term since its

coupling to collective spin excitations is suppressed compared to the one generated by the ra · sf term.

6

Process Fundamental interaction E↵ective coupling in Eq. (4) Rate formula

Axion + B field ! phonon aE ·B f j =
1p
2
ga��

e
p
⇢a

ma
B · "�1

1 · Z⇤
j Eq. (18)

Axion ! magnon ra · se f j = �
ip
2
gaee (gj � 1)

p
⇢a

me
va Eq. (27)

TABLE I. Summary of the potentially detectable channels identified in section IV. The axion field a is given by

Eq. (3), ⇢a is its energy density, and va is its velocity. The axion couplings ga�� and gaee are defined in Eqs. (1)

and (2), and given by Eqs. (31) and (32) for the QCD axion. "1 is the high-frequency dielectric constant due

to electronic screening, Z⇤
j is the Born e↵ective charge tensor of the ion, and gj is the Landé g-factor. " here.

II. GENERAL FORMALISM FOR ABSORPTION RATE CALCULATIONS

In this section, we adapt the DM scattering calculations in Refs. [35, 37] to the present case of

bosonic DM absorption. Unlike the scattering case, light bosonic DM (denoted by a in what follows)

should be treated as a classical field. Within the coherence time ⌧a = (mav
2
a)

�1
⇠ 10�7 s (10meV/ma),

its e↵ect can be modeled as a harmonic perturbation on the target system as in Eq. (4). In this work,

we focus on configurations with no external AC electromagnetic fields, so that ! = ma. An AC

external field with frequency !e would generate perturbations with ! = |ma ± !e|, for which the

calculations in this section also apply.

Phonons and magnons arise from quantizing crystal lattice degrees of freedom, displacements ulj

and e↵ective spins Slj respectively, which DM can couple to, as mentioned in the Introduction — see

Eq. (4). The e↵ective couplings f j depend on the atom/ion types, hence the subscript j. We will

keep f j general in this section, and derive their expressions for the case of axion DM in Sec. IV.

We assume the target system is prepared in its ground state |0i at zero temperature. The transition

rate from standard time-dependent perturbation theory reads

� =
X

f

��hf | ˆ�H0|0i
��2 2⇡ �(! � !f ) . (5)

Strictly speaking, since phonons and magnons are unstable particles, the sum over final states f should

include multi-particle states resulting from their decays. In practice, however, when ! is close to a

phonon/magnon resonance, we can simply smear the delta function to the Breit-Wigner function and
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AXIONS AND QUAX

▸ We calculate single magnon excitation 

▸ Agree with classical calculation in the relevant limit 

▸ QUAX based on this idea 

▸ Requires lifting gapless magnon with external B-field

Figure 1: Sensitivity plot for SNR = 3 under Ttotal = 10 years. Left : Sensitivity of the
magnon detector on the axion-electron coupling gaee as a function of the axion mass ma.
The green and blue regions show the sensitivity for an ideal setup. The colors and styles of
regions represent di↵erent setups; the observation time for each scan is set to be Tobs = 103 s
(green) or 104 s (blue), and the cavity temperature is Tcav = 1K (dark-meshed) or 0.1K
(light). The orange dashed line shows the sensitivity for a realistic setup with Tobs = 103 s
and Tcav ⌧ ma. Throughout the figure, the setup of Mtarget = 1kg, ⌧ = 2µs, va = 10�3,
and sin2

✓ = 0.5 is assumed. Besides, the gray regions show the parameter region already
excluded by other searches and the yellow region and the black solid line correspond to
the prediction of the DFSZ model with 0.28 . tan � . 140 and that of the KSVZ model,
respectively. Right : Sensitivity of the cavity detector on the axion-photon coupling ga�� as a
function ofma. Similar to the left panel, the green and blue regions and orange lines show the
sensitivities with B0 = 1T, VcavGcav = 100 cm3, and ⌧cav = 2µs. The other shaded regions
show the region excluded by other searches and the black dashed (solid) line corresponds to
the prediction of the DFSZ (KSVZ) model.

va = 10�3, and sin2
✓ = 0.5. Gray regions correspond to the parameter space excluded by

other searches using the bremsstrahlung from white dwarfs [70], the brightness of the tip of
the red-giant branch in globular clusters [71], and the direct detection of solar axions at the
EDELWEISS-II [72], the XENON100 [73], and the LUX [74] collaborations. Besides, the
yellow region and the black solid line show the prediction for the DFSZ and KSVZ models,
respectively. To obtain the DFSZ prediction, we variate tan �, which is the ratio between
vacuum expectation values of the two Higgs doublets, within 0.28 . tan � . 140 as required
by the perturbative unitarity of Yukawa couplings [75]. By comparing with the right panel,
we can see that the axion search using the cavity mode has a better sensitivity than that
using magnon excitation for the DFSZ and KSVZ models. At the same time, however, the
sensitivity of the magnon detector reaches the DFSZ prediction for a relatively heavy mass
due to the Boltzmann suppression of the noise rate according to Eq. (44). Thus, the figure
shows the potential to probe the axion-electron coupling depending on the details of the
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AXIONS AND QUAX

▸ We calculate single magnon excitation 

▸ Agree with classical calculation in the relevant limit 

▸ QUAX based on this idea, dating from ‘80s 

▸ Requires lifting gapless magnon with external B-field
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FIG. 2. Calculated magnon dispersion of YIG along the high symmetry lines in the first Brillouin zone.

diagonalizing the quadratic Hamiltonian (corresponding to the leading terms in the 1/S expansion) by a Bogoliubov
transformation,

âlj =
1

p
N

X

k21BZ

âj,ke
ik·xlj , (A.3)

 
âj,k

â
†
j,�k

!
= Tk

 
b̂⌫,k

b̂
†
⌫,�k

!
where Tk =

 
Uj⌫,k Vj⌫,k

V⇤
j⌫,�k U⇤

j⌫,�k

!
, (A.4)

where xlj is the position of the jth site in the lth unit cell, we arrive at the free magnon Hamiltonian Eq. (3),

H =
nX

⌫=1

X

k21BZ

!⌫,kb̂
†
⌫,kb̂⌫,k , (A.5)

where b
†
⌫,k, b̂⌫,k are creation and annihilation operators for the canonical magnon modes. The canonical commutators

are preserved, [b̂⌫,k, b̂
†
⌫0,k0 ] = �⌫⌫0�kk0 , by imposing the following constraint,

Tk

 
1n 0n

0n �1n

!
T†

k =

 
1n 0n

0n �1n

!
. (A.6)

We follow the algorithm in Ref. [51] to solve the constrained diagonalization problem to obtain !⌫,k, Tk. Note that
Ref. [51] uses a di↵erent Fourier transformation convention, with xl rather than xlj in the exponent of Eq. (A.3).
We have consistently followed our convention throughout the calculation, adjusting the equations in Ref. [51] where
necessary. In Fig. 2, we plot our calculated magnon dispersion !⌫,k for YIG along the high symmetry lines in the
(body-centered cubic) 1BZ generated using the SeeK-path code [57].

Next, we derive the single magnon production matrix element Eq. (5) from the DM-electron spin coupling Eq. (4).
Assuming the absence of orbital angular momentum, a magnetic atom/ion at site l, j sources an e↵ective scattering
potential for the incoming DM, which is given by the Fourier transform of the momentum space operator,

Vlj(x) =

Z
d
3
q

(2⇡)3

X

↵

Ô
↵
�(q)Ŝ

↵
lj e

�iq·(x�xlj) . (A.7)

For a DM particle with incoming momentum p and outgoing momentum p0 = p� q, and a transition �i ! �f in the
target system, the matrix element is

M = h�f�f |V̂ |�i�ii =
1

N⌦

X

lj

Z
d
3
x e

iq·x
hsf�f |Vlj(x)|si�ii =

1

N⌦

X

↵

hsf |Ô
↵
�(q)|sii

X

lj

e
iq·xlj h�f |Ŝ

↵
lj |�ii . (A.8)



AXION DETECTION WITH SINGLE MAGNON

▸ There are other ways to lift the gapless mode 

▸ Material anisotropy, non-degenerate g-factor.  toy-models 
show good reach
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FIG. 5. Projected reach on gaee from axion-to-magnon conversion, compared with DFSZ (assuming 0.28 

tan�  140) and KSVZ model predictions, as well as white dwarf (WD) constraints from Ref. [64]. The

suppression of axion-magnon couplings is alleviated by using the three strategies discussed in the main text:

lifting gapless magnon modes by an external magnetic field (YIG target in a 1T magnetic field, compared to

the scanning scheme of Ref. [49]), anisotropic interactions (NiPS3 target), and using targets with nondegenerate

g-factors (hypothetical toy models based on YIG, referred to as YIGo and YIGt). For all the cases considered

we assume 3 events per kilogram-year exposure, and take the magnon width to frequency ratio �/! to be 10�2

(solid) or 10�5 (dashed).

c. Nondegenerate g-factors. Finally, we consider coupling the axion to gapped magnon modes in

the presence of nondegenerate g-factors. We are not aware of a well-characterized material with non-

degenerate g-factors so, as a proof of principle, we entertain a few toy models, where a nondegenerate

` component is added to the e↵ective spins S in YIG. In reality, all the magnetic ions Fe3+ in YIG

have (`, s, S) = (0, 5/2, 5/2); the orbital angular momenta of 3d electrons are quenched. In Fig. 5, we

show the reach for two toy models, with either the octahedral sites or the tetrahedral sites modified

to have (`, s, S) = (1, 5/2, 7/2). In each case, only one of the 19 gapped magnon modes, at 7meV

Trickle, Zhang, KZ 2005.10256
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where we have denoted C� ⌘ E/N � 1.92(4) with E/N = 0 (8/3) in the KSVZ (DFSZ) model. The

axion-fermion couplings Cf are also model dependent. In particular, the axion-electron coupling is

Ce = sin2 �/3 in the DFSZ model, where tan� is the ratio of the vacuum expectation values of the

two Higgs doublets giving masses to the up and down-type quarks. In the KSVZ model, on the other

hand, Ce is O(↵2) suppressed.

In the following subsections we consider axion couplings independent of external fields and in the

presence of a magnetic field.3 In each case, we discuss the phonon and magnon excitation processes

that are allowed, and identify those with potentially detectable rates. The results of this exercise are

summarized in Table I.

A. Axion couplings independent of external fields

The axion wind coupling to electron spin leads to a coupling to the spin component of Slj . From

slj + `lj = Slj and 2slj + `lj = gjSlj , we see that the axion wind couples to slj = (gj � 1)Slj . Thus,

�Ĥ = �
gaee

me
ra ·

X

lj

(gj � 1)Slj = �
gaee

me
(imava)

a0

2
·

X

lj

(gj � 1)Slj e
ip·x0

lj�i!t + h.c. (34)

In the notation of Eq (4), we thus have

f j = �
i
p
2
gaee (gj � 1)

p
⇢a

me
va . (35)

For an order of magnitude estimate of the rate, let us note that the mixing matrices U, V in Eq. (27)

generically scale as 1/
p
n with n the number of magnetic ions in a primitive cell. The maximum rate

is obtained on resonance, which is parametrically given by

R ⇠
g
2
aee ⇢av

2
a

m2
e

ns

⇢T�
⇠ (kg·yr)�1

✓
gaee

10�15

◆2✓
µeV

�

◆
. (36)

where ns and ⇢T are the spin and mass densities of the target, taken to be (5 Å)�3 and 5 g/cm3,

respectively (close to the values for YIG), in the estimate. We see that, with single magnon sensitivity,

interesting values of gaee may be reached with less than a kilogram-year exposure.

The axion wind also couples to nucleon spins. However, these couplings do not excite magnons,

since magnetic order originates from electron-electron interactions, meaning that the e↵ective spins of

3 An external electric field shifts the equilibrium positions of the ions such that there is no net electric field at the new

equilibrium positions, so it does not generate new axion couplings at leading order.
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▸ Phonon-polaritons also couple to the axion!
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Process Fundamental interaction E↵ective coupling in Eq. (4) Rate formula

Axion + B field ! phonon aE ·B f j =
1p
2
ga��

e
p
⇢a

ma
B · "�1

1 · Z⇤
j Eq. (18)

Axion ! magnon ra · se f j = �
ip
2
gaee (gj � 1)

p
⇢a

me
va Eq. (27)

TABLE I. Summary of the potentially detectable channels identified in section IV. The axion field a is given by

Eq. (3), ⇢a is its energy density, and va is its velocity. The axion couplings ga�� and gaee are defined in Eqs. (1)

and (2), and given by Eqs. (31) and (32) for the QCD axion. "1 is the high-frequency dielectric constant due

to electronic screening, Z⇤
j is the Born e↵ective charge tensor of the ion, and gj is the Landé g-factor. " here.

II. GENERAL FORMALISM FOR ABSORPTION RATE CALCULATIONS

In this section, we adapt the DM scattering calculations in Refs. [35, 37] to the present case of

bosonic DM absorption. Unlike the scattering case, light bosonic DM (denoted by a in what follows)

should be treated as a classical field. Within the coherence time ⌧a = (mav
2
a)

�1
⇠ 10�7 s (10meV/ma),

its e↵ect can be modeled as a harmonic perturbation on the target system as in Eq. (4). In this work,

we focus on configurations with no external AC electromagnetic fields, so that ! = ma. An AC

external field with frequency !e would generate perturbations with ! = |ma ± !e|, for which the

calculations in this section also apply.

Phonons and magnons arise from quantizing crystal lattice degrees of freedom, displacements ulj

and e↵ective spins Slj respectively, which DM can couple to, as mentioned in the Introduction — see

Eq. (4). The e↵ective couplings f j depend on the atom/ion types, hence the subscript j. We will

keep f j general in this section, and derive their expressions for the case of axion DM in Sec. IV.

We assume the target system is prepared in its ground state |0i at zero temperature. The transition

rate from standard time-dependent perturbation theory reads

� =
X

f

��hf | ˆ�H0|0i
��2 2⇡ �(! � !f ) . (5)

Strictly speaking, since phonons and magnons are unstable particles, the sum over final states f should

include multi-particle states resulting from their decays. In practice, however, when ! is close to a

phonon/magnon resonance, we can simply smear the delta function to the Breit-Wigner function and
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FIG. 3. Projected reach on ga�� from axion absorption onto phonon polaritons in Al2O3, CaWO4, GaAs and

SiO2, in an external 10T magnetic field, averaged over the magnetic field directions, assuming 3 events per

kilogram-year. Also shown are predictions of the KSVZ and DFSZ QCD axion models, and horizontal branch

(HB) star cooling constraints [63].

for a sapphire target, when b̂ is parallel (perpendicular) to the crystal c-axis, chosen to coincide with

the z-axis here, only 2 (4) out of the 6 resonances appear. This observation provides a useful handle

to confirm a discovery by running the same experiment with the magnetic field applied in di↵erent

directions.

B. Magnon excitation via the axion wind coupling

To compute the magnon excitation rate, we substitute the coupling f j in Eq. (35), into the rate

formula Eq. (27). In Sec. III, we discussed three strategies to alleviate the suppression of axion-magnon

couplings due to selection rules: external magnetic fields, anisotropic interactions, and nondegenerate

g-factors. In this subsection, we show the projected reach for each of these strategies. The results are

9

FIG. 2. Dispersion of phonon polaritons in GaAs near the center of the 1BZ, k ⇠ !. The mixing between the

photon and TO phonons is maximal at ! ⇠ k. At k ⌧ !, the TO phonon-like modes are degenerate with the

LO phonon mode (blue line), while at ! � k they approach their unperturbed value (dotted blue line), and an

LO-TO splitting is present.

is

Ĥ =
3n+2X

⌫=1

X

k

!
0
⌫,kâ

0†
⌫,kâ

0
⌫,k +O

�
â
03�

. (14)

At each k, there are (3n+2) modes, created (annihilated) by â
0†
⌫,k (â0⌫,k), which are linear combinations

of 3n phonon modes and 2 photon polarizations. Among them, 5 are gapless at k = 0, including 3

acoustic phonons and 2 photon-like polaritons. The number of gapped modes, 3n� 3, is the same as

in the phonon-only theory, but their energy spectrum is shifted, {!0
⌫=(6,...,3n+2),k} 6= {!⌫=(4,...,3n),k}.

The original phonon modes are linear combinations of the phonon polariton eigenmodes:

â⌫,k =
3n+2X

⌫0=1

�
U⌫⌫0,k â

0
⌫0,k + V⌫⌫0,k â

0†
⌫0,�k

�
. (15)

For DM coupling to the atomic displacements ulj , the perturbing potential is given by Eq. (4) and
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Process Fundamental interaction E↵ective coupling in Eq. (4) Rate formula

Axion + B field ! phonon aE ·B f j =
1p
2
ga��

e
p
⇢a

ma
B · "�1

1 · Z⇤
j Eq. (18)

Axion ! magnon ra · se f j = �
ip
2
gaee (gj � 1)

p
⇢a

me
va Eq. (27)

TABLE I. Summary of the potentially detectable channels identified in section IV. The axion field a is given by

Eq. (3), ⇢a is its energy density, and va is its velocity. The axion couplings ga�� and gaee are defined in Eqs. (1)

and (2), and given by Eqs. (31) and (32) for the QCD axion. "1 is the high-frequency dielectric constant due

to electronic screening, Z⇤
j is the Born e↵ective charge tensor of the ion, and gj is the Landé g-factor. " here.

II. GENERAL FORMALISM FOR ABSORPTION RATE CALCULATIONS

In this section, we adapt the DM scattering calculations in Refs. [35, 37] to the present case of

bosonic DM absorption. Unlike the scattering case, light bosonic DM (denoted by a in what follows)

should be treated as a classical field. Within the coherence time ⌧a = (mav
2
a)

�1
⇠ 10�7 s (10meV/ma),

its e↵ect can be modeled as a harmonic perturbation on the target system as in Eq. (4). In this work,

we focus on configurations with no external AC electromagnetic fields, so that ! = ma. An AC

external field with frequency !e would generate perturbations with ! = |ma ± !e|, for which the

calculations in this section also apply.

Phonons and magnons arise from quantizing crystal lattice degrees of freedom, displacements ulj

and e↵ective spins Slj respectively, which DM can couple to, as mentioned in the Introduction — see

Eq. (4). The e↵ective couplings f j depend on the atom/ion types, hence the subscript j. We will

keep f j general in this section, and derive their expressions for the case of axion DM in Sec. IV.

We assume the target system is prepared in its ground state |0i at zero temperature. The transition

rate from standard time-dependent perturbation theory reads

� =
X

f

��hf | ˆ�H0|0i
��2 2⇡ �(! � !f ) . (5)

Strictly speaking, since phonons and magnons are unstable particles, the sum over final states f should

include multi-particle states resulting from their decays. In practice, however, when ! is close to a

phonon/magnon resonance, we can simply smear the delta function to the Breit-Wigner function and
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FIG. 3. Projected reach on ga�� from axion absorption onto phonon polaritons in Al2O3, CaWO4, GaAs and

SiO2, in an external 10T magnetic field, averaged over the magnetic field directions, assuming 3 events per

kilogram-year. Also shown are predictions of the KSVZ and DFSZ QCD axion models, and horizontal branch

(HB) star cooling constraints [63].

for a sapphire target, when b̂ is parallel (perpendicular) to the crystal c-axis, chosen to coincide with

the z-axis here, only 2 (4) out of the 6 resonances appear. This observation provides a useful handle

to confirm a discovery by running the same experiment with the magnetic field applied in di↵erent

directions.

B. Magnon excitation via the axion wind coupling

To compute the magnon excitation rate, we substitute the coupling f j in Eq. (35), into the rate

formula Eq. (27). In Sec. III, we discussed three strategies to alleviate the suppression of axion-magnon

couplings due to selection rules: external magnetic fields, anisotropic interactions, and nondegenerate

g-factors. In this subsection, we show the projected reach for each of these strategies. The results are

9

FIG. 2. Dispersion of phonon polaritons in GaAs near the center of the 1BZ, k ⇠ !. The mixing between the

photon and TO phonons is maximal at ! ⇠ k. At k ⌧ !, the TO phonon-like modes are degenerate with the

LO phonon mode (blue line), while at ! � k they approach their unperturbed value (dotted blue line), and an

LO-TO splitting is present.

is

Ĥ =
3n+2X

⌫=1

X

k

!
0
⌫,kâ

0†
⌫,kâ

0
⌫,k +O

�
â
03�

. (14)

At each k, there are (3n+2) modes, created (annihilated) by â
0†
⌫,k (â0⌫,k), which are linear combinations

of 3n phonon modes and 2 photon polarizations. Among them, 5 are gapless at k = 0, including 3

acoustic phonons and 2 photon-like polaritons. The number of gapped modes, 3n� 3, is the same as

in the phonon-only theory, but their energy spectrum is shifted, {!0
⌫=(6,...,3n+2),k} 6= {!⌫=(4,...,3n),k}.

The original phonon modes are linear combinations of the phonon polariton eigenmodes:

â⌫,k =
3n+2X

⌫0=1

�
U⌫⌫0,k â

0
⌫0,k + V⌫⌫0,k â

0†
⌫0,�k

�
. (15)

For DM coupling to the atomic displacements ulj , the perturbing potential is given by Eq. (4) and



▸ UV Complete theories tend to give rise to both spin-
independent and spin-dependent interactions 

▸ Exception is pseduoscalar coupling on SM side
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Model UV Lagrangian NR EFT Responses

Standard SI
�
�
g�JS,� + g JS, 

�
or

c( )
1 =

g�g
eff
 

q2+m2
�,V

N
Vµ

�
g�J

µ
V,� � g J

µ
V, 

�

Standard SD a Vµ

�
g�J

µ
A,� + g J

µ
A, 

�
c( )
4 =

4g�g 
q2+m2

V
S

Other

scalar

mediators

P⇥ S �
�
g�JP,� + g JS, 

�
c( )
11 =

m 

m�

g�g
eff
 

q2+m2
�

N

S⇥P �
�
g�JS,� + g JP, 

�
c( )
10 = � g�g 

q2+m2
�

S

P⇥P �
�
g�JP,� + g JP, 

�
c( )
6 =

m 
m�

g�g 
q2+m2

�
S

Multipole

DM

models

Electric dipole Vµ

⇣
g�J

µ
edm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘
c( )
11 = �m 

m�

g�g
eff
 

q2+m2
V

N

Magnetic dipole Vµ

⇣
g�J

µ
mdm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘

c( )
1 = q2

4m2
�

g�g
eff
 

q2+m2
V

N, S, L
c( )
4 = eµe↵

 
q2

m�m 

g�g
eff
 

q2+m2
V

c( )
5 =

m 

m�

g�g
eff
 

q2+m2
V

c( )
6 = �eµe↵

 

m 

m�

g�g
eff
 

q2+m2
V

Anapole Vµ

⇣
g�J

µ
ana,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘ c( )
8 = q2

2m2
�

g�g
eff
 

q2+m2
V N, S, L

c( )
9 = �eµe↵

 
q2

2m2
�

g�g
eff
 

q2+m2
V

(L · S)-interacting Vµ

�
g�J

µ
V,� + g (J

µ
mdm, + Jµ

V 2, )
�

c( )
1 = (1 + ) q2

4m2
 

g�g 
q2+m2

V

N,S, L⌦ S
c( )
3 =

g�g 
q2+m2

V

c( )
4 = q2

m�m 

g�g 
q2+m2

V

c( )
6 = �m 

m�

g�g 
q2+m2

V

a Heavy mediator only.

TABLE II. Benchmark models of spin- 12 DM � coupling to SM fermions  = p, n, e. Each model is matched

onto the NR EFT by multiplying the currents J�J (defined in Table I) and the mediator propagator,

and accounting for in-medium e↵ects (if present) according to Eq. (14). The leading order nonvanishing

coe�cients c( )i for the operators O
( )
i (defined in Table III) are listed in the second to last column. For

the multipole DM models, �eµ ⌘ eµ � 1 where eµ is half the Landé g-factor of  (eµp ' 2.8, eµn ' �1.9,

eµe ' 1), and we have defined eµe↵
 ⌘ 1 + g 

geff
 
�eµ . The last column lists the lattice degrees of freedom which

enter the scattering potential, Eq. (30). All models can excite phonons, and models with S or L response

generated by DM-electron coupling can also excite magnons.

For each UV model, the coe�cients c( )i of the NR operators generated at leading order are given

in Table II. These coe�cients contain all the information for constructing the lattice potential eVlj

for a given DM model, and will be exploited below for computing the DM detection rate. The list

of NR operators O
( )
i is already familiar from previous works on the EFT for direct detection via

All have N response, probed by phonons

See Trickle, Zhang, KZ 2009.13534
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Model UV Lagrangian NR EFT Responses

Standard SI
�
�
g�JS,� + g JS, 

�
or

c( )
1 =

g�g
eff
 

q2+m2
�,V

N
Vµ

�
g�J

µ
V,� � g J

µ
V, 

�

Standard SD a Vµ

�
g�J

µ
A,� + g J

µ
A, 

�
c( )
4 =

4g�g 
q2+m2

V
S

Other

scalar

mediators

P⇥ S �
�
g�JP,� + g JS, 

�
c( )
11 =

m 

m�

g�g
eff
 

q2+m2
�

N

S⇥P �
�
g�JS,� + g JP, 

�
c( )
10 = � g�g 

q2+m2
�

S

P⇥P �
�
g�JP,� + g JP, 

�
c( )
6 =

m 
m�

g�g 
q2+m2

�
S

Multipole

DM

models

Electric dipole Vµ

⇣
g�J

µ
edm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘
c( )
11 = �m 

m�

g�g
eff
 

q2+m2
V

N

Magnetic dipole Vµ

⇣
g�J

µ
mdm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘

c( )
1 = q2

4m2
�

g�g
eff
 

q2+m2
V

N, S, L

c( )
4 = eµ q2

m�m 

g�g 
q2+m2

V

c( )
5a =

m 

m�

g�g
eff
 

q2+m2
V

c( )
5b =

m 

m�

g�g 
q2+m2

V

c( )
6 = �eµ 

m 

m�

g�g 
q2+m2

V

Anapole Vµ

⇣
g�J

µ
ana,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘
c( )
8a = q2

2m2
�

g�g
eff
 

q2+m2
V

N, S, Lc( )
8b = q2

2m2
�

g�g 
q2+m2

V

c( )
9 = �eµ q2

2m2
�

g�g 
q2+m2

V

(L · S)-interacting Vµ

�
g�J

µ
V,� + g (J

µ
mdm, + Jµ

V 2, )
�

c( )
1 = (1 + ) q2

4m2
 

g�g 
q2+m2

V

N,S, L⌦ S
c( )
3a = c( )

3b =
g�g 

q2+m2
V

c( )
4 = q2

m�m 

g�g 
q2+m2

V

c( )
6 = �m 

m�

g�g 
q2+m2

V

a Heavy mediator only.

TABLE II. Benchmark models of spin- 12 DM � coupling to SM fermions  = p, n, e. For each model, the

leading order nonvanishing coe�cients c( )i for the NR EFT operators O
( )
i (defined in Table III) are listed

in the second to last column. ge↵ are the screened couplings defined in Eq. (14), and eµ = 1 + �eµ is half

the Landé g-factor of  (eµp ' 2.8, eµn ' �1.9, eµe ' 1). The last column lists the lattice degrees of freedom

which enter the scattering potential, Eq. (27). All models can excite phonons, and models with S or L

response generated by DM-electron coupling can also excite magnons.

motivated class of (hidden sector) models contain DM particles coupling to a vector mediator via a

multipole moment, which in turn kinetically mixes with the photon (see e.g. Refs. [61, 67, 69–74]).

We consider the electric dipole, magnetic dipole and anapole DM models, which generate O11,

O1,4,5a,5b,6 and O8a,8b,9, respectively. Finally, Table II includes a model where a vector mediator

Gresham, KZ 1401.3739
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Model UV Lagrangian NR EFT Responses

Standard SI
�
�
g�JS,� + g JS, 

�
or

c( )
1 =

g�g
eff
 

q2+m2
�,V

N
Vµ

�
g�J

µ
V,� � g J

µ
V, 

�

Standard SD a Vµ

�
g�J

µ
A,� + g J

µ
A, 

�
c( )
4 =

4g�g 
q2+m2

V
S

Other

scalar

mediators

P⇥ S �
�
g�JP,� + g JS, 

�
c( )
11 =

m 

m�

g�g
eff
 

q2+m2
�

N

S⇥P �
�
g�JS,� + g JP, 

�
c( )
10 = � g�g 

q2+m2
�

S

P⇥P �
�
g�JP,� + g JP, 

�
c( )
6 =

m 
m�

g�g 
q2+m2

�
S

Multipole

DM

models

Electric dipole Vµ

⇣
g�J

µ
edm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘
c( )
11 = �m 

m�

g�g
eff
 

q2+m2
V

N

Magnetic dipole Vµ

⇣
g�J

µ
mdm,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘

c( )
1 = q2

4m2
�

g�g
eff
 

q2+m2
V

N, S, L
c( )
4 = eµe↵

 
q2

m�m 

g�g
eff
 

q2+m2
V

c( )
5 =

m 

m�

g�g
eff
 

q2+m2
V

c( )
6 = �eµe↵

 

m 

m�

g�g
eff
 

q2+m2
V

Anapole Vµ

⇣
g�J

µ
ana,� + g 

�
Jµ
V, + �eµ Jµ

mdm, 

�⌘ c( )
8 = q2

2m2
�

g�g
eff
 

q2+m2
V N, S, L

c( )
9 = �eµe↵

 
q2

2m2
�

g�g
eff
 

q2+m2
V

(L · S)-interacting Vµ

�
g�J

µ
V,� + g (J

µ
mdm, + Jµ

V 2, )
�

c( )
1 = (1 + ) q2

4m2
 

g�g 
q2+m2

V

N,S, L⌦ S
c( )
3 =

g�g 
q2+m2

V

c( )
4 = q2

m�m 

g�g 
q2+m2

V

c( )
6 = �m 

m�

g�g 
q2+m2

V

a Heavy mediator only.

TABLE II. Benchmark models of spin- 12 DM � coupling to SM fermions  = p, n, e. Each model is matched

onto the NR EFT by multiplying the currents J�J (defined in Table I) and the mediator propagator,

and accounting for in-medium e↵ects (if present) according to Eq. (14). The leading order nonvanishing

coe�cients c( )i for the operators O
( )
i (defined in Table III) are listed in the second to last column. For

the multipole DM models, �eµ ⌘ eµ � 1 where eµ is half the Landé g-factor of  (eµp ' 2.8, eµn ' �1.9,

eµe ' 1), and we have defined eµe↵
 ⌘ 1 + g 

geff
 
�eµ . The last column lists the lattice degrees of freedom which

enter the scattering potential, Eq. (30). All models can excite phonons, and models with S or L response

generated by DM-electron coupling can also excite magnons.

For each UV model, the coe�cients c( )i of the NR operators generated at leading order are given

in Table II. These coe�cients contain all the information for constructing the lattice potential eVlj

for a given DM model, and will be exploited below for computing the DM detection rate. The list

of NR operators O
( )
i is already familiar from previous works on the EFT for direct detection via
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10�3 10�2 10�1 1 10
m� [MeV]

10�16
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10�10
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10�4
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g �
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FIG. 3. Projected reach on the multipole DM models listed in Table II, assuming dark photon-like

couplings to SM particles: gp = �ge, gn = 0. The left panel shows the hierarchy of sensitivities of single

phonon excitations, in GaAs and in SiO2, to the three multipole DM models, together with the SI interaction

model for comparison. The center and right panels focus on the magnetic dipole and anapole DM models,

respectively, and compare the phonon reach of GaAs and SiO2 (via the N response), and the magnon reach

of YIG (via the S response) and ↵-RuCl3 (via both S and L responses); these models are best probed by

magnons, though the phonon sensitivity with an optimal target like SiO2 may be competitive.

DM models generate O1 and O11 at leading order, respectively, both of which induce only the N

response, which can be probed by single phonon excitation. The di↵erential rates are

⌃⌫(q)
SI
phonon =

g2�g
2
e

(q · "1 · q)2

���F (p)
N,⌫ � F (e)

N,⌫

���
2
, (65)
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2
e

(q · "1 · q)2
q2

4m2
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���F (p)
N,⌫ � F (e)

N,⌫

���
2
. (66)

Eq. (65) is in agreement with previous results in Refs. [33, 34, 53]. The magnetic dipole and the

anapole DM models generate, in addition to N , also S and L responses, and can therefore be

probed by both phonons and magnons. For single phonon excitation, we have

⌃⌫(q)
mdm
phonon =

g2�g
2
e
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, (67)
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Polar crystals - N response

YIG - S response

Kitaev material - S&L 
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FIG. 3. Projected reach on the multipole DM models listed in Table II, assuming dark photon-like

couplings to SM particles: gp = �ge, gn = 0. The left panel shows the hierarchy of sensitivities of single

phonon excitations, in GaAs and in SiO2, to the three multipole DM models, together with the SI interaction

model for comparison. The center and right panels focus on the magnetic dipole and anapole DM models,

respectively, and compare the phonon reach of GaAs and SiO2 (via the N response), and the magnon reach

of YIG (via the S response) and ↵-RuCl3 (via both S and L responses); these models are best probed by

magnons, though the phonon sensitivity with an optimal target like SiO2 may be competitive.

DM models generate O1 and O11 at leading order, respectively, both of which induce only the N

response, which can be probed by single phonon excitation. The di↵erential rates are
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Eq. (65) is in agreement with previous results in Refs. [33, 34, 53]. The magnetic dipole and the

anapole DM models generate, in addition to N , also S and L responses, and can therefore be

probed by both phonons and magnons. For single phonon excitation, we have
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identified in Ref. [34], up to O(1) factors we have dropped here. It captures the material properties

that determine the sensitivity to the SI model with a dark photon mediator, and is the quantity

to maximize in order to optimize target choice. For example, SiO2 has a quality factor that is

about 80 times that of GaAs, which explains its significantly better reach, by almost an order of

magnitude on the coupling g�ge, as seen in Fig. 3 (and also previously in Ref. [34]).

For magnon excitations for the magnetic dipole and anapole DM models, we have considered

YIG, which probes only the S response, and ↵-RuCl3, which probes both S and L. Since for these

models, DM couples to the linear combination 2Se + Le – the spin of an elementary particle has

a Landé g-factor of 2 – the additional L response that ↵-RuCl3 has does not qualitatively improve

the sensitivity. Indeed, we see from Fig. 3 that YIG and ↵-RuCl3 have very similar reach around

m� ⇠ 0.1MeV. At higher m�, YIG performs better due to additional contributions from the large

number of gapped magnon modes. On the other hand, ↵-RuCl3 extends the reach down to much

lower m� ⇠ keV. As discussed previously, this is because the magnon modes at zero momentum

are gapped at a few meV (in contrast to YIG which has a gapless magnon branch that dominates

the coupling to DM in the low momentum transfer limit).

Finally, we can compare the magnon and phonon excitation rates for the two models (magnetic

dipole and anapole DM) where both are available. Let us denote Q ⌘
Q2

ion
"21

m2
p

mcellmion

1meV
! , which is

the phonon quality factor with the dimensionful parameters normalized in a way close to Ref. [34].

Its values are typically O(10�7-10�5), with GaAs and SiO2 residing on the lower and higher ends

of the interval, respectively. We find

Rmdm
phonon

Rmdm
magnon

⇠
Rana

phonon

Rana
magnon

⇠
Qmcellm2

ev
2

Sionm2
p · 1meV

⇠ 10�4

✓
Q

1.4 ⇥ 10�7

◆
, (71)

where mcell is for the target for magnon excitations, and we have substituted the numbers for YIG

in the last equation. We see that, for the magnetic dipole and anapole DM models, magnons are

indeed more sensitive than phonons, though choosing high phonon quality factor targets, such as

SiO2 with Q ⇠ 10�5 can approach the magnon sensitivity. Up to O(1) factors, this is consistent

with the center and right panels of Fig. 3.

D. (L · S)-Interacting Dark Matter

We finally consider the (L ·S)-interacting DM model, which induces N , S and L ⌦ S responses.

Taking the mediator to couple only to electrons for simplicity, we obtain the di↵erential rates:
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e
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SPIN-ORBIT MATERIALS

▸ Angular momentum — spin-orbit-entangled Mott insulator 

▸ Effective spins 

▸ Kitaev material with bond directional coupling, 
Antiferromagnetic order 

▸ All magnons (4 branches) are gapped 

▸ Theoretical material
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relations, [b̂⌫,k, b̂
†
⌫0,k0 ] = �⌫⌫0�k,k0 with all others vanishing. An e�cient algorithm for the diagonal-

ization can be found in Ref. [65] (see also Refs. [56, 78]). Now computing the magnon excitation

matrix element h⌫,k|Slj |0i, and hence the DM scattering rate, is reduced to standard algebra. We

obtain [56, 78]
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, (42)

where rj = (Rxx
j , Ryx

j , Rzx
j ) + i (Rxy

j , Ryy
j , Rzy

j ). As in the phonon case, it is implicit that k

matches q up to a reciprocal lattice vector, q = k +G, due to lattice momentum conservation.

A comment is in order about the target choice. In the case where the total Slj involve only spin

degrees of freedom (as is the case for yttrium iron garnet (YIG) discussed in Ref. [56]), �S,j = 1,

�L,j = 0, and only the first two lines of Eq. (38) are relevant. Targets for which �L,j 6= 0 are more

exotic. One class of materials with �L,j 6= 0 is spin-orbit-entangled Mott insulators [79–81], where

the combined e↵ect of crystal fields and spin-orbit coupling results in e↵ective spins Sj = 1
2 , and

we can show that �S,j = �
1
3 , �L,j = �

4
3 (see Appendix B for details, and Refs. [80–83] for related

discussion), so the magnetic ions’ e↵ective spins are in fact dominated by their orbital components.

Perovskite irridates such as Sr2IrO4 [79, 82] and Kitaev materials Na2IrO3, ↵-RuCl3 [81, 83–85] are

among the materials with this feature that have been actively studied recently by the condensed

matter physics community. While perhaps futuristic as DM detectors, such materials have the

novel feature of being sensitive to DM couplings with electrons’ orbital angular momenta.

As a final remark, we note from the derivation above that when the same crystal response,

hSei or hLei, excites both phonons and magnons, the phonon excitation rate is parametrically

suppressed by q2

mion!
⇠ 10�2

� q
keV

�2�10GeV
mion

��
10meV
!

�
. Thus, for example, for the third group of

operators in Table III with  = e, which generates only hSei response, single magnon excitation

is expected to achieve better sensitivity than single phonon excitation for the same exposure and

detector e�ciency. On the other hand, since phonons can be excited also by other crystal responses,

they have a broader coverage of the DM theory space. We will investigate the interplay between

single phonon and magnon excitations in the context of our benchmark models in the next section.

III. APPLICATION TO BENCHMARK MODELS

We now apply the general results of the previous section to the set of benchmark models in

Table II. The first step of the calculation – matching the relativistic model onto the NR EFT – was

already done in Sec. II A. The results are the operator coe�cients c( )i listed in the second to last
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See Trickle, Zhang, KZ 2009.13534



PSEUDOSCALAR INTERACTIONS
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FIG. 2. Comparison of the total detection rate in models with a light (left panel) or heavy (right panel)

scalar mediator. The couplings to SM fermions are taken proportional to their masses, gp = gn = mp

me
ge,

and we fix g�ge = 10�13. Each curve is labeled with the model type as in Table II and the excitation type

(phonon or magnon) that can probe each model. The phonon curves assume SiO2 (solid) and GaAs (dashed)

targets, and the magnon curves assume YIG (solid) and ↵-RuCl3 (dashed) targets.

In Fig. 2, we plot the expected rate for each of the four coupling combinations, for a common

value for the product of couplings, to illustrate the hierarchy between the rate from the di↵erent

interactions. We have chosen to show the rate instead of projected reach here so that the general

case where more than one types of interactions are present, it would be straightforward to rescale

the curves to see which one is dominant. For example, if g(S)� ⇠ g(P )
� , g(S) ⇠ g(P )

 , we have the

highest rate from phonon excitations via the S ⇥ S coupling, i.e. the standard SI interaction,

as expected. On the other hand, if the couplings to SM fermions are dominantly pseudoscalar,

g(P )
 /g(S) & 107, magnon excitations have better sensitivity than phonon excitations for the same

exposure; this is one of the benchmark models considered previously in Ref. [57]. The hierarchy

seen in Fig. 2, and also some main features of the curves, can be understood following Eqs. (43)

and (44), as we now explain.

First consider the light mediator case, mV ⌧ q (left panel of Fig. 2). For phonon excitations

in the S ⇥ S and P ⇥ S models, since the couplings to all ions have the same sign, the rate is

dominated by acoustic phonons. For q within the 1BZ, setting ! ⇠ csq, we obtain
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Model UV Lagrangian NR EFT Responses

Standard SI
�
�
g�JS,� + g JS, 

�
or

c( )
1 =

g�g
eff
 

q2+m2
�,V

N
Vµ

�
g�J

µ
V,� � g J

µ
V, 

�

Standard SD a Vµ

�
g�J

µ
A,� + g J

µ
A, 

�
c( )
4 =

4g�g 
q2+m2

V
S

Other

scalar

mediators

P⇥ S �
�
g�JP,� + g JS, 

�
c( )
11 =

m 

m�

g�g
eff
 

q2+m2
�

N

S⇥P �
�
g�JS,� + g JP, 

�
c( )
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q2+m2
�

S

P⇥P �
�
g�JP,� + g JP, 
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c( )
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m 
m�

g�g 
q2+m2

�
S

Multipole

DM

models

Electric dipole Vµ
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g�J

µ
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�
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V, + �eµ Jµ
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�⌘
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N

Magnetic dipole Vµ
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Anapole Vµ
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V, + �eµ Jµ
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8a = q2

2m2
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2m2
�

g�g 
q2+m2

V

c( )
9 = �eµ q2

2m2
�

g�g 
q2+m2

V

(L · S)-interacting Vµ
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1 = (1 + ) q2

4m2
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a Heavy mediator only.

TABLE II. Benchmark models of spin- 12 DM � coupling to SM fermions  = p, n, e. For each model, the

leading order nonvanishing coe�cients c( )i for the NR EFT operators O
( )
i (defined in Table III) are listed

in the second to last column. ge↵ are the screened couplings defined in Eq. (14), and eµ = 1 + �eµ is half

the Landé g-factor of  (eµp ' 2.8, eµn ' �1.9, eµe ' 1). The last column lists the lattice degrees of freedom

which enter the scattering potential, Eq. (27). All models can excite phonons, and models with S or L

response generated by DM-electron coupling can also excite magnons.

motivated class of (hidden sector) models contain DM particles coupling to a vector mediator via a

multipole moment, which in turn kinetically mixes with the photon (see e.g. Refs. [61, 67, 69–74]).

We consider the electric dipole, magnetic dipole and anapole DM models, which generate O11,

O1,4,5a,5b,6 and O8a,8b,9, respectively. Finally, Table II includes a model where a vector mediator



DM-PHONON, DM-ELECTRON DETECTION RATE CALCULATOR

▸ Codes are publicly available 

▸ phonodark.caltech.edu, exceed-dm.caltech.edu 

▸ Code is the work of Tanner Trickle for his thesis 

▸ Accumulates theoretical reach for broad range of 
interactions (EFT) and materials (26).  Also includes daily 
modulation. 

▸ Accumulates theoretical work starting in 2015 -> 2017 
-> 2022 w/Knapen, Lin, Trickle, Zhang

http://exceed-dm.caltech.edu


COLLECTIVE PHENOMENA IN MATERIALS

mass

100 GeV1 GeV1 MeV1 keV1 eV1 meV

Nuclear recoil 

XENON1T 
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Electron 
excitation 

Semiconductor 

SuperCDMS

Absorption
Super-

conductors

Collective Excitations — 
Phonons/ Magnons

~eV energy 
resolution

~keV energy 
resolution

~meV energy 
resolution

QCD axion, “ultralight frontier”

Dirac 
Materials

Polar 
Crystals

Superfluid 
helium



EXPERIMENTAL PROSPECTS
▸ Sensor to detect phonons coupled to DM “absorber” 

▸ Zero-field read-out of phonons 

▸ Now funded by DoE — TESSERACT (TES with Sub-EV Resolution and Cryogenic 
Targets) 

▸ For a polar crystal target — Sub-eV Polar Interactions Cryogenic Experiment 
(SPICE).  For superfluid helium, HeRaLD



SUMMARY

▸ Electronic excitation and collective excitations provide a path to 
detect light DM 

▸ Theory framework for computing DM interaction rates in 
materials is now well-developed 

▸ New experiments such as TESSERACT/SPICE have broad 
discovery potential for light DM 

▸ Single magnon detection would offer reach to the QCD axion as 
well as spin-dependent dark matter, but experimental prospects 
for single magnon detection are unclear.  Welcome to discuss ideas!


