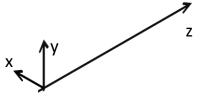
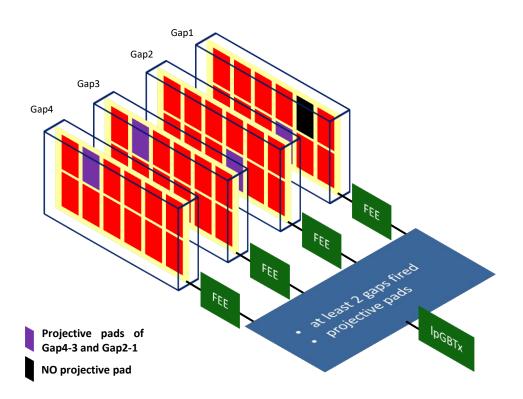

Simulation studies for a new Muon detector read-out at U2

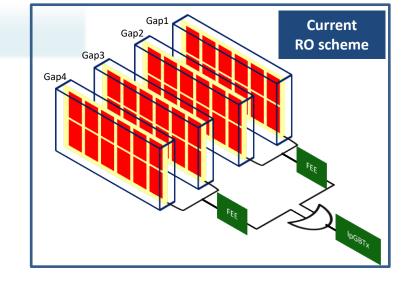
F. Debernardis, A. Pastore Università degli Studi di Bari, INFN Bari

Outline

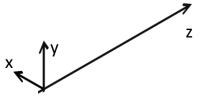

- Motivation for a new read-out scheme for the Muon Detector at U2
- Simulation framework and first studies
- Evaluation of the Muon ID geometrical inefficiency with the new RO scheme
- Conclusion and outlooks

Proposal of a new read-out scheme

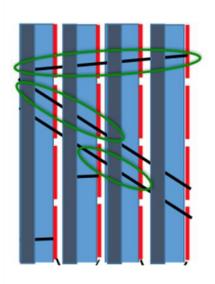



Current readout scheme

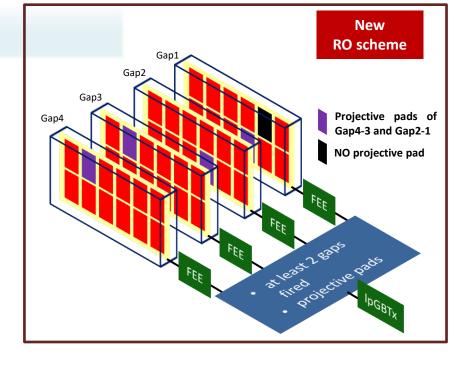
- → OR of 2 gaps, again ORed at Front End Electronics (FEE) level
- → This 4 gaps OR generates a very high input rate, up to 90% in inner regions, due to single gap background signal.


Proposal of a new read-out scheme

New readout scheme


- → each gap is read-out separately, requiring :
 - 1. signal in at least 2 gaps out of 4 of a chamber
 - 2. at least two projective logical pads fired in the two gaps

Need for new RO simulation studies


Evaluation of geometrical inefficiency

Geometrical inefficiency induced by a requirement of 2 projective pads fired out of 4 gaps is a crucial ingredient in detector design and in the readout choice

- Take muons in present simulation (any luminosity)
- Act at MC truth level (.sim), where hits simulated on the 4 chamber gaps are available
- For each station/region superimpose a mask corresponding to the chamber granularity and check measure the geometrical inefficiency
- For R1 and R2 (new detectors), optimise the inefficiency as a function of granularity

Proposal for a MC study for Upgrade 2
Matteo, Patrizia
muon software meeting, 17/02/2021

Setting the scene

Future Upgrades of LHCb Muon System LNF, 27 June '22

Monte Carlo production

- Take muons in present simulation (any luminosity)
- Act at MC truth level (.sim), where hits simulated on the 4 chamber gaps are available

$J/\psi ightarrow \mu^+ \mu^-$ MC sample

Production (self)made on LNF machines

Gauss version: v55r0

• Events $J/\psi -> \mu^+\mu^-$: **216 000**

#importOptions("\$APPCONFIGOPTS/Gauss/Beam7000GeV-md100-nu7.6-HorExtAngle.py") importOptions('\$APPCONFIGOPTS/Gauss/OneFixedInteraction.py')

#importOptions("\$APPCONFIGOPTS/Gauss/EnableSpillover-25ns.py")

importOptions("\$GAUSSOPTS/Gauss-Upgrade-Baseline.py")

importOptions('\$DECFILESROOT/options/24142000.py')

#geo = GaussGeo()

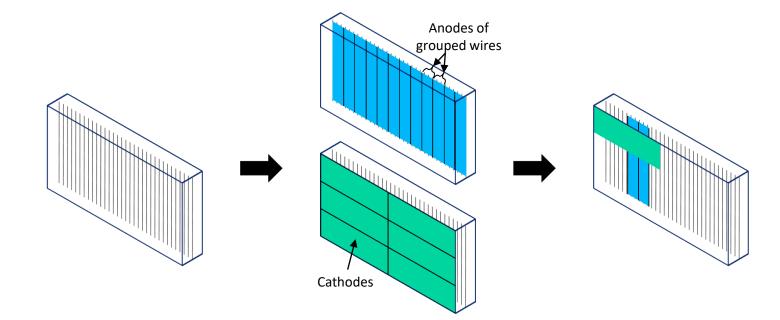
#geo.GeoItemsNames += ["/dd/Structure/Infrastructure"]

importOptions("\$GAUSSOPTS/DBTags-2022.py")

Gauss Job

• Data sample :

MC truth level (.sim)

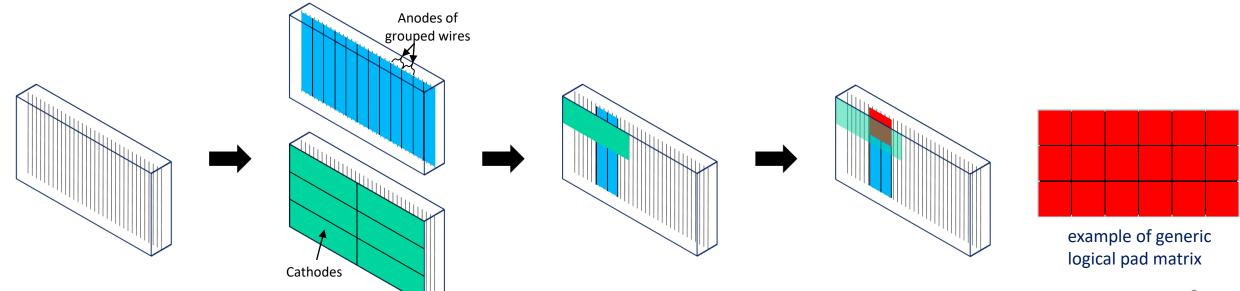

 $J/\psi \rightarrow \mu^+\mu^-$ events, with at least one $\mu^{+/-}$ (J/ψ daugther) detected by the Muon Detector with E>3GeV

MWPC granularity

- For each station/region superimpose a mask corresponding to the chamber granularity and check measure the geometrical inefficiency

MWPC - **PHYSICAL** pad granularity

(#41) #41)	M2		N	/13	N	14 M5		15
$(\#x \times \#y)$	Anodes	Cathodes	Anodes	Cathodes	Anodes	Cathodes	Anodes	Cathodes
R1	48 × 1	8 × 8	48 × 1	8 × 8		12 × 8		12 × 8
R2	48 × 1	8×8	48 × 1	8×8		12 × 4		12 × 4
R3		48 × 2		48×2		24 × 2		24 × 2
R4	24 × 1		24 × 1		24 × 1		24 × 1	


MWPC granularity

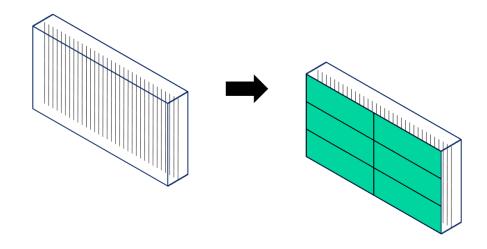
MWPC - **PHYSICAL** pad granularity

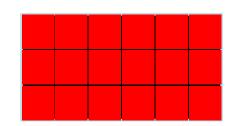
(#20 \	M2		N	/13	N	//4 M		15
$(\#x \times \#y)$	Anodes	Cathodes	Anodes	Cathodes	Anodes	Cathodes	Anodes	Cathodes
R1	48 × 1	8 × 8	48 × 1	8 × 8		12 × 8		12 × 8
R2	48 × 1	8 × 8	48 × 1	8 × 8		12 × 4		12 × 4
R3		48 × 2		48 × 2		24 × 2		24 × 2
R4	24 × 1		24 × 1		24 × 1		24 × 1	

LOGICAL pad granularity

	$(\#x \times \#y)$	M2	M3	M4	M5
	R1	48 × 8	48 × 8	12 × 8	12 × 8
\cdot	R2	48 × 4	48 × 4	12 × 4	12 × 4
	R3	48 × 2	48 × 2	12 × 2	12 × 2
	R4	24 × 1	24 × 1	6 × 1	6 × 1

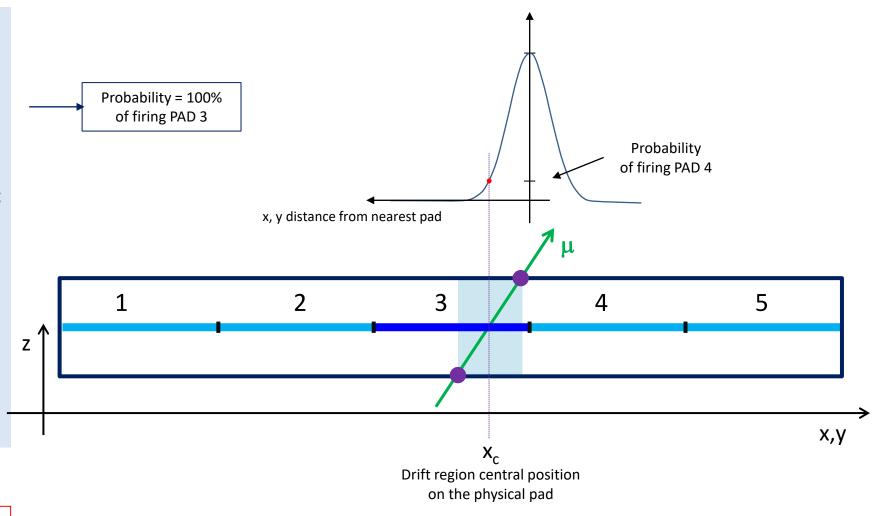
R1-R2 granularity, µRWELL option


Assuming:


- → current geometrical configuration for each chamber
- → current dimensions for all gaps in a chamber

LOGICAL pad granularity

μRWELL option							
$(\#x \times \#y)$	M2	М3	M4	М5			
R1	32×28	32 × 28	32 × 28	32 × 28			
R2	64 × 14	64 × 14	64 × 14	64 × 14			

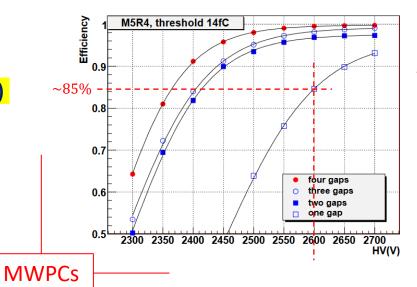

example of generic logical pad matrix

Fired physical pads

The search for fired physical pads in a gap exploits:

- Drift regions of electrons produced by the gas ionisation when a muon crosses the gap
- Electrical coupling of the **nearest** adjacent physical pad
- Parameters used for the probability crosstalk function:

https://gitlab.cern.ch/lhcbconddb/SIMCOND/-/blob/master/Conditions/Muon/Rea doutConf/Modules.xml

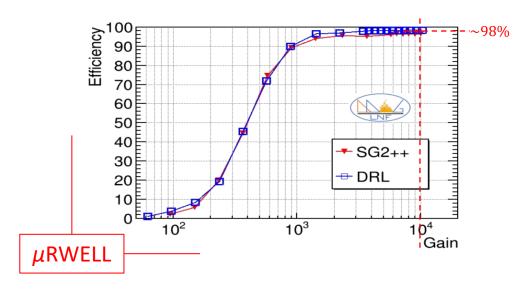

 μ RWELL option assuming the same as MWPC


Single gap Time Efficiency

As preliminary evaluation,

Single gap Time Efficiency (SgTE)

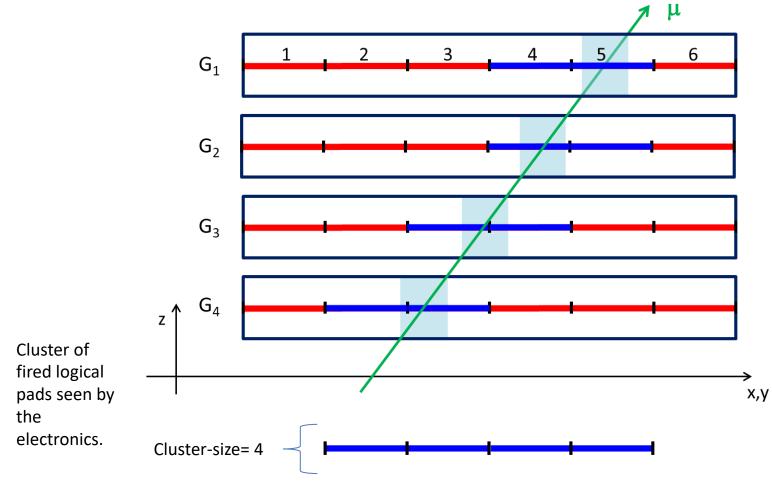
equal to: 85%



The LHCb Collaboration et al 2008 JINST 3 S08005

As preliminary evaluation,

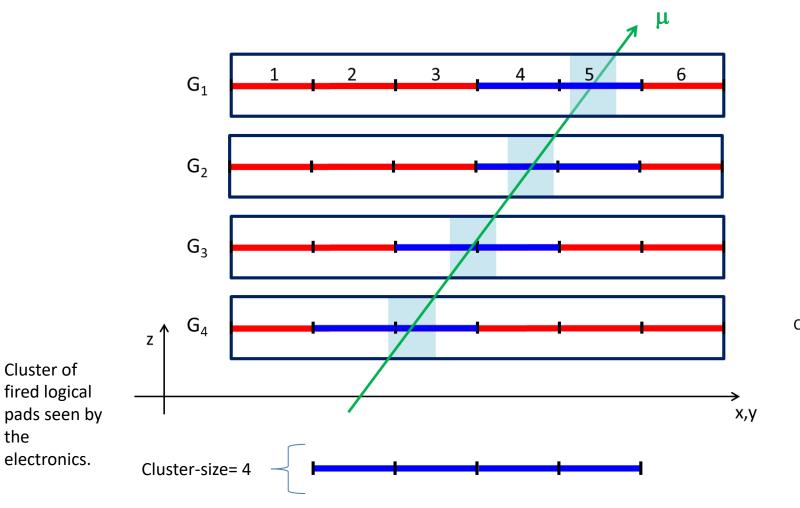
Single gap Time Efficiency (SgTE)

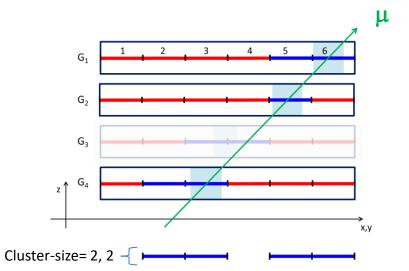

equal to: 98%

Consistency check: cluster size

Current definition:

the number of fired adjacent logical pads obtained with the 4-gaps ORed.

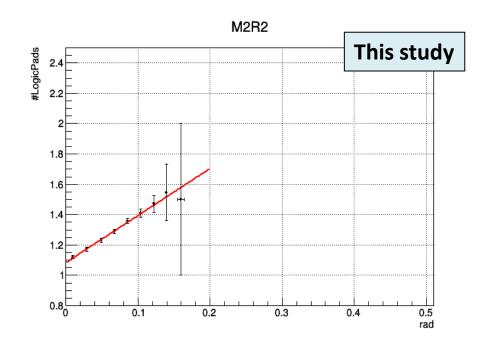

Consistency check: cluster size

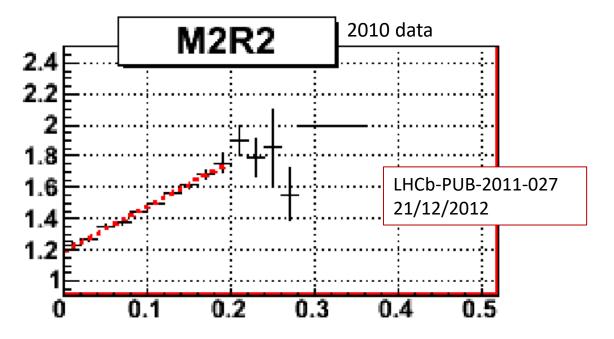

Current definition:

Cluster of

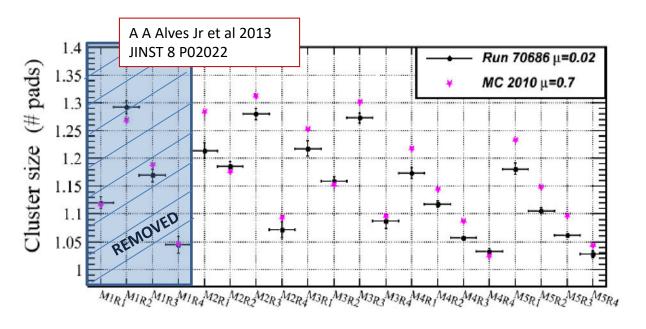
the

the number of fired adjacent logical pads obtained with the 4-gaps ORed.

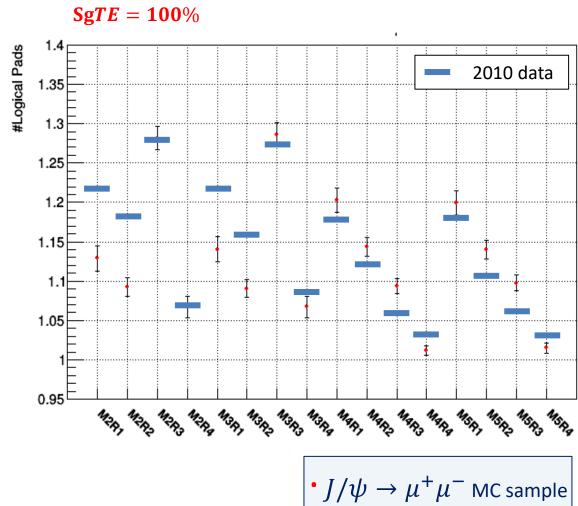




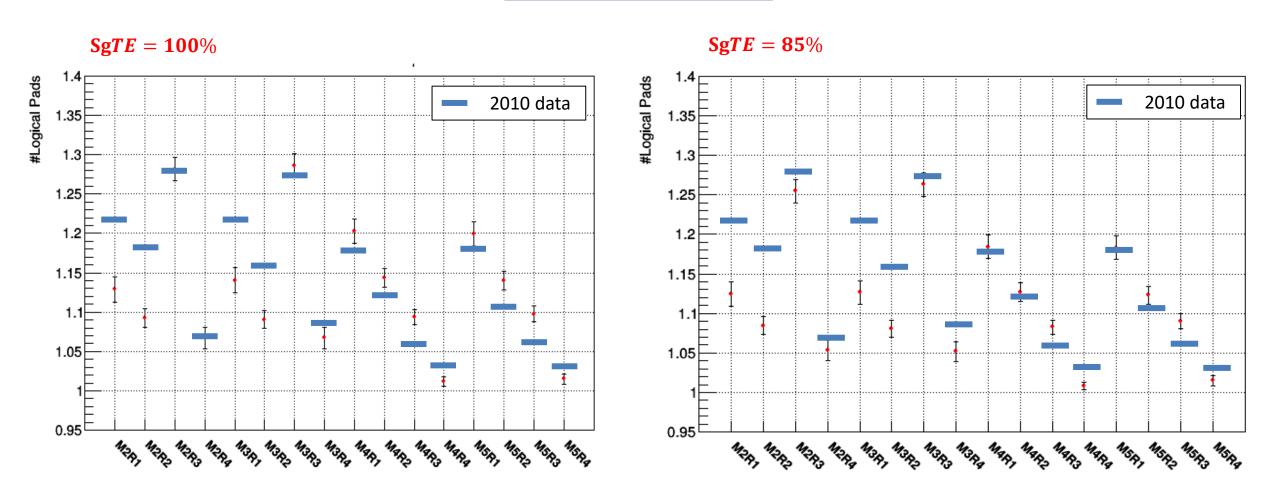
Muon cluster size $vs < \theta >$


For each region of each station, the simulated muon average cluster size dependency on its mean angle (xz plane) has been evaluated and compared with previous results (Run1 data).

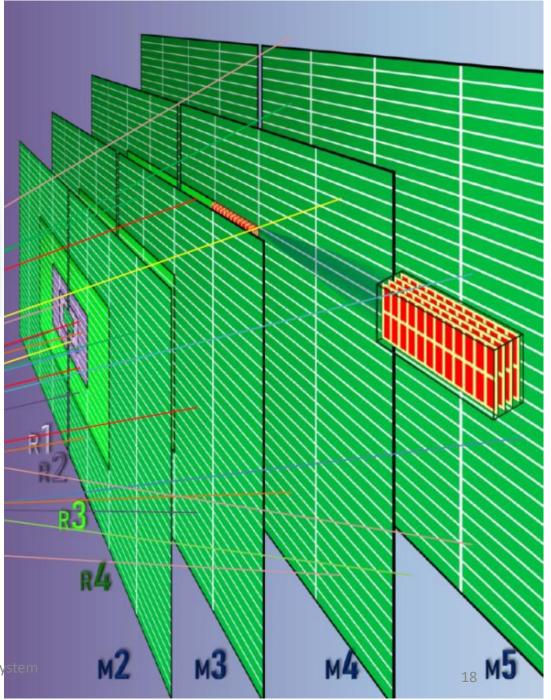
- Muons daughter of J/ψ
- $E_{\mu} > 10 \ GeV$
- Cluster-size < 5



Average μ cluster size comparison


For the measurement of particle rates, cluster size and time resolution, events triggered by some minimum bias condition, independently of the muon detector response, were used:

- minimum bias trigger (L0MB), requiring the total energy released in the HCAL to be more than 320 MeV;
- "microbias" single track trigger (microbias), requiring some hits compatible with a track in the VELO or first tracking stations.



Average μ cluster size comparison

•
$$J/\psi \to \mu^+\mu^-$$
 MC sample

 μ identification and the new RO scheme

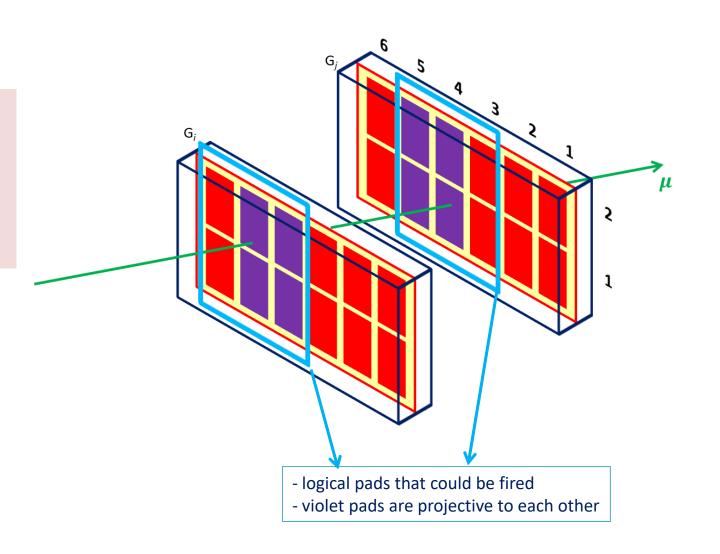
Future Upgrades of LHCb Muon System LNF, 27 June '22

Current μ identification requirements

p [GeV/c]	Required stations					
p [dev/e]	IsMuon	IsMuonLoose				
p < 3	$Always\ false$	$Always\ false$				
	M2 & M3	At least two of M2–M4				
6	$M2 \& M3 \& (M4 \parallel M5)$	At least three of M2–M5				
p > 10	M2 & M3 & M4 & M5	At least three of M2–M5				

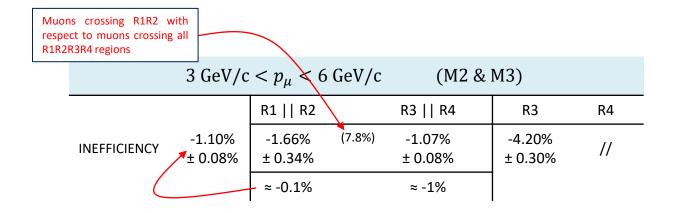
Different identification variables can be constructed...The first identification variable is a boolean decision, called **IsMuon**, obtained from the extrapolation of a long or a downstream track through the muon stations, making a statement about whether a track is consistent with a muon hypothesis.

Optimization of the muon reconstruction algorithms for LHCb Run 2
LHCb-PUB-2017-007
(21/02/2017)


μ identification with the new RO scheme

New proposal:

- → each gap is read-out separately, requiring:
 - 1. signal in at least 2 gaps out of 4 in a chamber
 - 2. at least two projective logical pads fired in the two gaps



Projectivity NOT to be requested in M234-R4 where the 2 bi-gaps are physically ORed

Geometrical inefficiency of the new RO scheme

μRWELL (SgTE = 98%) + present MWPCs (SgTE = 85%)



6 GeV/c $< p_{\mu} < 10$ GeV/c				(M2 & M3 & (M4 M5))			
		R1 R2		R3 R4	R3	R4	
INEFFICIENCY	-1.07% ± 0.06%	-0.63% ± 0.15%	(10.0%)	-1.12% ± 0.07%	-3.87% ± 0.22%	-0.01% ± 0.01%	
		≈ -0.07%		≈ -1%			

	$p_{\mu} > 10$	GeV/c	(M2	& M3 & M4 &	M5)	
		R1 R2		R3 R4	R3	R4
INEFFICIENCY	-2.00% ± 0.04%	-0.28% ± 0.02%	(50.1%)	-3.83% ± 0.08%	-5.52% ± 0.12%	-1.51% ± 0.08%
		≈ -0.1%		≈ -1.9%		

Exploring the impact of projectivity in M234R4 (projectivity only)

μRWELL (SgTE = 100%) + present MWPCs (SgTE = 100%)

$6 \text{ GeV/c} < p_{\mu} < 10 \text{ GeV/c}$ (M2 & M3 & (M4 M5))							
		R1 R2		R3 R4	R3	R4	
INEFFICIENCY	-4.89% ±0.13%	-0.59% ±0.15%	(10.0%)	-5.45% ±0.14%	-0.67% ±0.10%	-7.82% ±0.20%	2.34% + 5.48%
		≈ -0.1%		≈-4.8%	1		

$p_{\mu} > 10 \text{ GeV/c}$ (M2 & M3 & M4 & M5)							
		R1 R2		R3 R4	R3	R4	-
INEFFICIENCY	-1.53% ±0.03%	-0.26% ±0.02%	(50.1%)	-2.94% ±0.07%	-0.44% ±0.03%	-7.02% ±0.15%	1.77% + 5.25%
		≈ -0.1%		≈ -1.4%]		

Exploring the impact of projectivity in M234R4

μRWELL (SgTE = 98%) + present MWPCs (SgTE = 85%)

Only one bigap fired

6 GeV	$c/c < p_{\mu} <$	< 10 GeV/	С	(M2 & M3 &			
		R1 R2		R3 R4	R3	R4	
INEFFICIENCY	-12.31% ±0.19%	-0.63% ±0.15%	(10.0%)	-13.77% ±0.20%	-3.87% ±0.22%	-18.39% ±0.27%	11.26% + 7.13%
		≈ -0.1%		≈-12.2%			

	$p_{\mu} > 10$	GeV/c	(M2 & M3 & M4 & M5)				
		R1 R2		R3 R4	R3	R4	
INEFFICIENCY	-6.04% ±0.06%	-0.28% ±0.02%	(50.1%)	-12.01% ±0.12%	-5.52% ±0.12%	-21.99% ±0.23%	14.33% + 7.66%
		≈ -0.1%		≈ -5.9%]		

Conclusion and Outlooks

- Intense work to explore potentialities and drawbacks of the proposed new read-out scheme for the Muon Detector at U2
- Simulation analysis framework set up successfully from scratch
- First comparison with Runl-II data validate the analysis framework itself
- First evaluation of the Muon ID geometrical inefficiency with the new RO scheme shows encouraging results and exclude AND of bi-gap for M234R4
- Now looking at (2015) data, and at a low threshold minimum bias on-going MC production, to study f_c coefficient

backup

Single gap time inefficiency

A preliminary evaluation has been done, considering the

tiTh ≡ time inefficiency Threshold = 10%, 20%

- Present pads configuration
- μRWELL options

MC muon TRACK	_	Filtered muon TRACK
(St, Rg, Ch, Gp)		(St, Rg, Ch, Gp)
(2, 4, 117, 4)	->	(2, 4, 117, 4)
(2, 4, 117, 3)	->	(2, 4, 117, 3)
(2, 4, 117, 2)	->	(2, 4, 117, 2)
(2, 4, 117, 1)	->	(2, 4, 117, 1)
(3, 4, 117, 4)	->	(3, 4, 117, 4)
(3, 4, 117, 3)	<pre>if (random->Uniform() > tiTh) save gap else delete gap</pre>	(3, 4, 117, 3)
(3, 4, 117, 2)	->	deleted
(3, 4, 117, 1)	->	(3, 4, 117, 1)
(4, 4, 117, 4)	->	deleted
(4, 4, 117, 3)	->	deleted
(4, 4, 117, 2)	->	(4, 4, 117, 2)
(4, 4, 117, 1)	->	(4, 4, 117, 1)

Analised

Geometrical inefficiency of the new RO scheme (detailed)

ons crossing R1R2 with	present MWPCs (SgTE= 85%)				
pect to muons crossing all 2R3R4 regions	3 GeV/c	$< p_{\mu} < 60$	GeV/c ((M2 & M3)	
	R1 R2		R3 R4	R3	R4
MC truth	1387	(7.8%)	16469	4171	11980
NO projectivity	1387		16469	4171	11980
YES projectivity	1304		16295	3998	11980
INEFFICIENCY	-5.98% ± 0.62%		-1.06% ± 0.08%	-4.15% ± 0.30%	//
6 GeV	$r/c < p_{\mu} < r$	10 GeV/c	(M2 &	1 5))	
	R1 R2		R3 R4	R3	R4
MC truth	2703	(10.0%)	24455	7149	16779
NO projectivity	2703		24455	7149	16779
YES projectivity	2578		24183	6878	16778
INEFFICIENCY	-4.62% ± 0.39%		-1.11% ± 0.07%	-3.79% ± 0.22%	-0.01% ± 0.01%
	$p_{\mu} > 10$ G	GeV/c	(M2 & M3 &		
	R1 R2		R3 R4	R3	R4
MC truth	65273	(50.1%)	64919	38261	25732
NO projectivity	65273		64918	38260	25732
YES projectivity	61488		62422	36136	25345
INEFFICIENCY	-5.80% ±		-3.84% ±	-5.55% ±	-1.50% ± 0.08%

0.08%

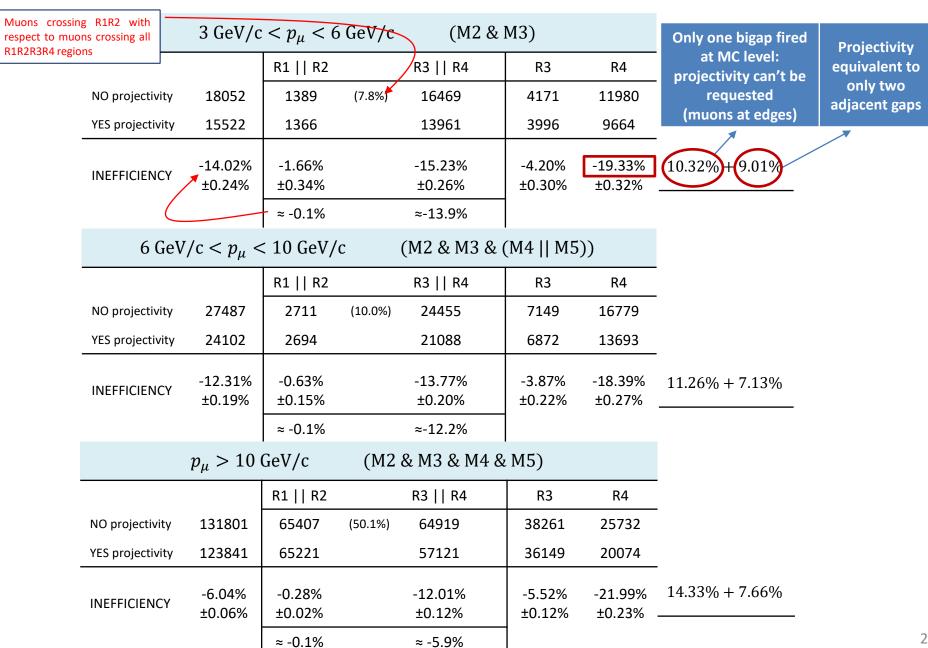
0.12%

0.09%

μRWELL	(SgTE = 98%)) + _I	present MWPCs	SgTE =	85 %
--------	--------------	------------------	---------------	--------	-------------

	3 (GeV/c < p	(M2 & M3)		
	R1 R2		R3 R4	R3	R4
_	1389	(7.8%)	16469	4171	11980
	1389		16469	4171	11980
	1366		16293	3996	11980
	-1.66% ± 0.34%		-1.07% ± 0.08%	-4.20% ± 0.30%	//
	6 GeV/c <	$p_{\mu} < 10$	M2 & M3 & (N	//4 M5))	
	R1 R2		R3 R4	R3	R4
	2711	(10.0%)	24455	7149	16779
	2711		24455	7149	16779
	2694		24180	6872	16778
	-0.63% ± 0.15%		-1.12% ± 0.07%	-3.87% ± 0.22%	-0.01% ± 0.01%
	p_{μ} :	> 10 GeV	/c (M2 &	. M3 & M4 & N	M5)
	R1 R2		R3 R4	R3	R4
	65407	(50.2%)	64919	38261	25732
	65407		64918	38260	25732
	65221		62433	36149	25344
_	-0.28% ± 0.02% pernardis		-3.83% ± 0.08%	-5.52% ± 0.12%	-1.51% ± 0.08%

Exploring the impact of projectivity in M234R4 (projectivity only, detailed)


μRWELL (SgTE = 100%) + present MWPCs (SgTE = 100%)

		-					-	-
ing R1R2 with lons crossing all ions	3 GeV/c	$c < p_{\mu} < \epsilon$	6 GeV/c	(M2 8	и М3)		Only one bigap fired	Projectivity
		R1 R2		R3 R4	R3	R4	at MC level: projectivity can't be	equivalent t
NO projectivity	y 18094	1391	(7.8%)	16507	4180	12014	requested	only two adjacent gap
YES projectivit	y 16924	1370		15358	4136	10903	(muons at edges)	aujacent gap
INEFFICIENCY	-6.47% ±0.18%	-1.51% ±0.32% ≈ -0.1%		-6.96% ±0.19% ≈-6.4%	-1.05% ±0.16%	-9.25% ±0.25%	2.71%)+6.54%	
$6 \text{ GeV/c} < p_{\mu} < 10 \text{ GeV/c}$ (M2 & M3 & (M4 M5))						5))		
		R1 R2		R3 R4	R3	R4	1	
NO projectivity	y 27531	2711	(10.0%)	24499	7159	16815		
YES projectivit	y 26185	2695		23163	7111	15500		
INEFFICIENCY	-4.89% ±0.13%	-0.59% ±0.15%		-5.45% ±0.14%	-0.67% ±0.10%	-7.82% ±0.20%	2.34% + 5.48%	
		≈ -0.1%		≈-4.8%				
$p_{\mu} > 10 \text{ GeV/c}$ (M2 & M3 & M4 & M					& M5)			
		R1 R2		R3 R4	R3	R4	-	
NO projectivity	131978	65408	(50.1%)	65102	38373	25813	•	
YES projectivity	y 129956	65236		63190	38205	24000	_	
INEFFICIENCY	, -1.53% ±0.03%	-0.26% ±0.02%		-2.94% ±0.07%	-0.44% ±0.03%	-7.02% ±0.15%	1.77% + 5.25%	
		≈ -0.1%		≈ -1.4%				

28

Exploring the impact of projectivity in M234R4 (detailed)

 μ RWELL (*SgTE* = 98%) + present MWPCs (SgTE = 85%)

