Expected rates and possible scenarios for the Muon Detector @ UPGII

Wander Baldini

INFN Sezione di Ferrara

Overview

- Rates estimate from FEB scaler data:
 - Rates/cm²
 - Rates/physical-pad and possible scenarios for the UPGII detector
 - Minimal option
 - Other options
- Electronics
- Summary and next steps

Muon detector @UPG2 in a nutshell

Baseline option as in the FTDR:

Inner regions (R1-R2): μRWell (new generation MPGD) → 144 chambers, 23 m² Max Rate: ~ 1 MHz/cm²

Outer regions (R3-R4): MWPCs (present + new high granularity) → 960 chambers, 364m², Rates: up to 20kHz/cm²

New FE Electronics

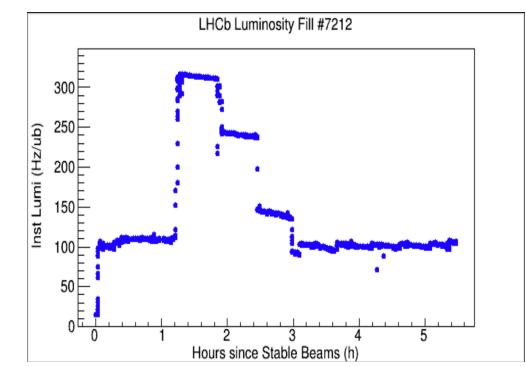
Other Options for outer regions:

• RPCs and/or Scintillating Tiles

FTDR Estimates still valid

Discussion/revision ongoing...

.......


Data Sample

Scalers data taken on Sept. 23rd 2018:

- https://lblogbook-run2.cern.ch/MUON/7164
- 542 bunches colliding in LHCb
- 4 lumi points: (1.1, 1.4, 2.39, 3,12) x10³² cm⁻²s⁻¹ luminosity averaged over 10min around the file time-stamp
- 2 quadrants: Q2 (A side down) and Q3 (C side down)
- A and C side independent measurements → used as a cross-check
- One rate value per DIALOG channel (OR of 2 projective PADs in bi-gaps), 16 values per FEB
- FEB **INPUT rates** (scalers are before any logical combination)
- Quite some work was already done by Oleg (one lumi point, 1 quadrant)

	552833 567520 622193 632541 703129 703226 761901 712667 623755 593667 651783 631400 709622 714306 795627 795189
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A1.FEB00	
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A1.FEB01	
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A1.FEB02	2396273 2635804 2489076 2779717 2379270 2855575 2429260 2772725 2294000 2568448 2317546 2524241 2270718 2553581 2254438 2585464
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A1.FEB03	2271037 2350494 2326797 2416530 2221140 2385580 2224243 2369668 2111627 2201665 2158233 2137211 2185748 2394115 2085403 2275790
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A1.FEB04	4260799 4397906 3673817 3795612 3293736 3425480 3317882 3391476 3514893 3665008 3402110 3443618 3383072 3497025 3563469 3735673
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A1.FEB05	3298202 3412954 3393864 3551335 3594374 3753815 3384006 3518305 3336465 3566121 3571280 3738289 3351283 3475069 3278851 3394560
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A1.FEB06	
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A1.FEB07	3127507 3295452 3328477 3491619 2997155 3163562 3054278 3138847 3207249 3391558 3001112 3185011 3087638 3192370 3122668 3287424
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A1.FEB08	
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A1.FEB09	2768171 2880213 2600625 2707376 2496620 2661919 2627865 2700319 2393395 2524441 2328921 2459523 2505907 2627499 2496402 2732613
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A1.FEB11	
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A1.FEB12	
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A1.FEB13	2064976 2296354 2343859 2530818 2511963 2886317 2796677 3049780 2190511 2438710 2513530 2736777 2821359 3107577 2879372 3270753
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB00	
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB01	1289760 1457523 1399948 1565272 1579676 1744413 1755329 1939948 1240202 1436352 1436698 1542416 1498537 1679527 1681340 1959302
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB02	1590947 1792638 1340863 1585551 1227846 1453027 1188015 1273225 1477752 1656392 1362063 1472322 1250936 1435305 1142842 1327795
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB03	1376157 1670952 1239606 1506202 1112997 1412840 1061901 1268981 1362132 1637551 1237543 1441140 1127697 1286536 1029731 1192199
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB04	2754070 2822970 2559987 2646251 2258714 2351058 2205218 2242170 2282996 2381180 2098621 2200767 2040856 2194122 2097889 2218390
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB05	1920455 2032153 1958751 2077040 2027436 2134771 1860315 1936784 1823942 1922043 1920604 2034290 1742408 1862738 1704668 1788663
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB06	
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB07	1506357 1539138 1596218 1630202 1455410 1481405 1414643 1447362 1497495 1534374 1374020 1430802 1377479 1440437 1398283 1422677
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB08	1232908 1260940 1221656 1271421 1314713 1340954 1207979 1220306 1166607 1211208 1247658 1245911 1136096 1133060 1096240 1109086
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB09	1161283 1161001 1112416 1107100 1063737 1086115 1111832 1110898 996572 1052707 989658 996769 1058090 1092858 1073699 1115698
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB10	937851 1051006 833913 962229 794249 846628 693745 761503 922778 1113840 872995 919016 811063 872413 717963 807047
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB11	975775 1071383 905307 993393 811747 896164 749058 773666 1022025 1093272 931621 1003746 827277 904965 757837 805733
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB12	
MUDAQA23:MUONA_DAQ_M2A_R2_CMB14A3.FEB13	843960 911195 920702 1028050 1082063 1127555 1203840 1307906 829005 968172 998370 1034882 1123294 1242736 1244319 1376067

Example of scaler file

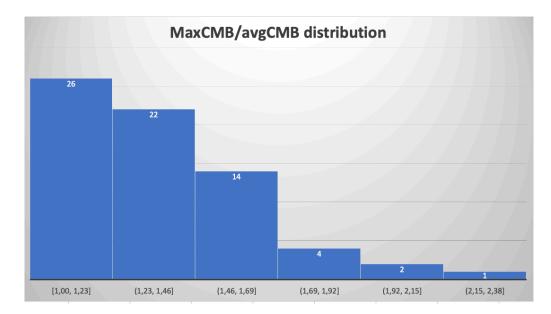
Method (I)

- Import data to excel
- Exclude bad values: 0, -1, noisy channels (defined as rates>10 times the average)
- Average rate per chamber (separately for PADs and Wires where needed)
- Calculate the Single gap rate from the formula:
 - $R_{1G} = R_{2G}/2*(1+3f_c)/(1+f_c)$
 - Latest **f**_c values from Giacomo (2015 data @ 6.5TeV)
- Calculate the Single-gap-rate/cm² dividing by Physical Pad area
- Include rate reduction factors (MC estimate) for:
 - Additional shielding installed in LS2 (HCAL&M2 new beam plugs + Tungsten)
 - "Iron wall" option D: full iron up to R3, iron-concrete "sandwitch" in R4 central area
- Linear fit of the 4 lumi points and projection to 1.5x10³⁴cm⁻²s⁻¹
- Plot of single and bi-gap rates per cm² and per physical pad

	M2	M3	M4	M5
R1	0,08	0,05	0,12	0,10
R2	0,10	0,08	0,14	0,14
R1 R2 R3 R4	0,16	0,22	0,34	0,33
R4	0,33	0,46	0,51	0,32

 $\mathbf{f}_{\mathbf{c}}$: fraction of correlated hits

M2	M3	M4	M5
0,50	0,75	1,00	1,00
0,75	0,90	1,00	1,00
1,00	1,00	1,00	1,00
1,00	1,00	1,00	1,00
	0,50 0,75 1,00	0,50 0,75 0,75 0,90 1,00 1,00	0,50 0,75 1,00 0,75 0,90 1,00 1,00 1,00 1,00


Reduction factors: Additional Shielding (LS2)

	M2	M3	M4	M5
R1	0,58	1,00	1,00	1,00
R2	0,31	1,00	1,00	1,00
R3	0,36	1,00	1,00	1,00
R4	1,00	1,00	1,00	1,00

Reduction factors: Iron Wall

Method (II)

- In M2R4, M3R4, M4R4 we cannot separate the bigaps (physically connected inside the chamber)
- Estimate the single channel input rate to the FEBs
- In order to keep the Dead Time inefficiency below 5%, assuming a DT=100ns, we should keep the input rate below 500kHz
- A safety factor of 2 is taken since:
 - The maximum/average ratio on a chamber has a maximum at ~2 and is ~ 1.5 on average
 - The correlation factor $f_c\,$ has large uncertainty which can cause an underestimation of the rates up to a factor ~1.5
- → in what follows the limit on the average rate is considered 250kHz

Typical distribution, over a quadrant (69 CMBs), of the Max-rate/AVG-rate ratio on a chamber

M2 and M3 Single Gap Hz/cm²

M2 A side

7108	5013	15467	51150	204597		16			
5752		10955	45306	114807	171961	15			
8048	7097	10763	30031	578	21	14			
4797	5285	7258	17744	342	28	13			
2541	4575	5641	1	18421		12			
3331	3514	3912	1	L1348		11			
3101	3014	3034	7066		7066			10	
2934	2280	1973	4518			4518			9
1928	2578	4701	9352			8			
1821	1410	3046	5915			7			
1733	1342	2554	4364			6			
1361	961	1881		2971		5			
604	907	1590		2366		4			
708	769	1251		1669		3			
899	844	1329		1650		2			
846	973	1404		1601		1			
D	С	В		Α					

M3 A side

		J A JIGC					
1435	2937	8360	42902	222910		16	
1255	2882	6638	37195	85504	123958	15	
1072	2062	4975	19586	560	97	14	
890	1544	3466	12963	313	12	13	
666	1128	2448		11591		12	
546	808	1707		6072		11	
447	627	1223		3112		10	
357	455	846		1754		9	
281	342	692		1197		8	
248	282	483		790		7	
192	226	388		562		6	
188	169	278		387		5	
141	151	230		294		4	
140	122	175		215		3	
129	112	160		188		2	
126	110	148		166		1	king file for the des
D	С	В		А			

M2 C side

16		214604	55944	14135	8832	7034
95 15	2	121826	40843	11798	7600	5757
14	962	629	27095	10240	6913	6015
13	701	317	17241	6806	5394	4365
12		17092	:	5349	4647	4404
11		11001		3675	3488	3225
10		7372		2916	2990	3249
9		4701		1888	2220	2403
8		9048		4383	1990	2379
7		6078		2832	1457	1810
6		4540		2461	1316	1749
5		3023		1712	953	1335
4		2401		1481	903	1325
3		1759		1132	750	1011
2		1649		1219	856	955
1		1646		1308	934	882
		Α		В	С	D

M3 C side

16	225322	41656	8643	2955	1419
158988 15	80720	35440	7102	2877	1240
28 14	615	19185	4993	2008	1043
27 13	294	11704	3450	1523	869
12	9687		2296	1144	669
11	5440		1714	823	532
10	3235		1128	651	444
9	1902		805	456	353
8	1342		637	368	282
7	904		480	279	245
6	645		357	223	198
5	465		266	185	174
4	344		215	145	155
3	266		167	119	131
2	216		150	117	121
1	191		141	108	122
	A		В	С	D

7

M4 and M5 Single Gap Hz/cm²

			/ Unde		
16	202169	25818	5427	1638	496
130958 15	78685	18686	4425	1334	427
14	331	10546	3164	1055	373
57 13	161	5850	2116	801	328
12	5959		1446	569	243
11	3461		1025	408	214
10	1909		717	317	181
9	1059		498	221	150
٤	697		314	188	127
7	441		285	147	119
e	314		228	119	95
5	212		163	98	87
4	160		137	82	76
3	116		110	67	72
2	95		91	64	66
1	80		73	61	66
	Α		В	С	D

M4 A side

M5 A side

	544	1022	5382	21367	284178		16	
	663	777	4827	14676	66951	107893	15	
	566	738	3295	11701	341	95	14	
	536	603	2547	7165	162	59	13	
	392	503	1886		7288		12	
Ī	506	500	1766		4868		11	
Ī	381	574	2267		4060		10	
Ī	499	766	4541		4646		9	
Ī	330	1077	3628		3866		8	
Ī	482	1319	5959		3740		7	
Ī	518	1612	3480		2352		6	
Ī	388	1188	2235		1586		5	
Ī	340	1090	1654		1127		4	
Ī	388	711	1176		909		3	
Ī	250	459	738		572		2	file feather deals
Ī	296	369	613		521		1	file for the desig
	D	С	В		Α			

M4 C side 71444 152252 **#VALUE! #VALUE!** С D В Α

M5 C side

	1763	1660	5872	23643	256150		16
	1939	1838	4687	17932	79298	175210	15
	1514	1272	3413	10368	362	15	14
	1562	1290	2424	7090	164	02	13
	838	740	1966		8993		12
	784	789	1994		4585		11
	565	782	2631		4253		10
	605	1039	5155		6420		9
	417	1209	9731		3833		8
	418	2048	6353		3477		7
	393	1901	4237		2362		6
	435	1224	2903		1737		5
	377	1220	1751		1289		4
	390	801	1146		957		3
he	310	790	806		661		2
ne-	315	447	697		512		1
	D	С	В		Α		

- In the following slides are reported the Physical PAD rates and some considerations on the number of chambers to be replaced in R3 and R4 to cope with UPG2 rates
- We assume that R1 and R2 will be equipped with new chambers and electronics
- Remember that in M2R4, M3R4, M4R4 we cannot separate the bi-gaps into single gaps → single and bi-gap rate will be reported
- In general A and C side are well in agreement, some difference in M5
- In M2 the situation is more complex and several options are possible, it will be discussed as the last

M3 Physical PAD Rates

	U								
209154	428258	305141	1171222	3053865		16			
183045	420220	242302	1015435	1171398	1698227	15			
156347	300614	181576	534709	15314	442	14			
129741	225071	126497	353887	8548	816	13			
97106	164516	89336		423085		12			
79633	117876	62291		221645		11			
65105	91473	44653		113595		10			
52075	66392	30881	64015			9			
40934	49929	100939		174543		8			
36203	41187	70399		115159		7			
27998	32927	56592		81990		6			
27456	24701	40500		56409		5			
20594	22065	33535		42840			42840		4
20481	17783	25523		31372		3			
18819	16346	23342		27356		2			
18320	16086	21527		24204		1			
D	С	В		А					

Single GAP Rate

	Bi-GA	P Rate				
256609	525425	448521	2040193	3101110		16
224576	446612	356154	1768823	2139075	5576623	15
191820	368821	266894	931428	2667	673	14
159178	276138	185935	616449	1489	035	13
119139	201843	131513		521883		12
97701	144621	91560		325791		11
79877	112227	65635	1	166971		10
63890	81455	45391		94095		9
50221	61257	123841		214145		8
44417	50531	86372	1	141288		7
34351	40398	69432	1	100593		6
33685	30305	49689		69207		5
25267	27071	41144		52560		4
25128	21817	31314		38490		3
23088	20055	28638		33563		2
22477	19735	26412		29696		1

В

А

Here we can move 5 M3R3 to R4 and put 5 new M3R3 chambers

 \rightarrow we should produce at least 20 new M3R3 with pads at least 2 times smaller

D

С

M4 Physical PAD Rates

Sing	le	GAP	Rates
•···	-	••••	

•····										
83366	275236	456409	1084337	<mark>2122770</mark>	16	99512	328543	605532	1741048 2264796	16
71719	224058	372142	784823	826194 1375055	15	85609	267452	493734	1260139 1360790 3496327	7 15
62684	177186	266057	442918	1391474	14	74824	211502	352987	711164 2234198	14
55152	134632	177937	245707	678582	13	65834	160707	236075	394516 1089554	13
40801	95616	121624		501159	12	48703	114134	161302	664904	12
35932	68608	86201	:	291033	11	42891	81896	114366	386123	11
30334	53246	60312	:	160535	10	36209	63559	80018	212987	10
25241	37075	41901		89062	9	30130	44256	55591	118161	9
21296	31618	52729	:	117160	8	25420	37742	62941	139851	8
19928	24721	47960		74015	7	23788	29509	57248	88350	7
15996	20009	38373		52715	6	19094	23884	45805	62925	6
14641	16464	27369		35699	5	17476	19652	32669	42613	5
12742	13758	22959		26818	4	15210	16423	27405	32012	4
12113	11265	18399		19546	3	14458	13447	21963	23331	3
11141	10763	15324		15966	2	13298	12848	18292	19059	2
11075	10278	12201		13419	1	13220	12268	14564	16018	1
D	С	В		A		D	С	В	Α	

Bi-GAP Rates

Also here we can move 5 M4R3 to R4 and put 5 new M4R3 chambers \rightarrow we should produce at least 20 new M4R3 with pads 4 times smaller

M5 Physical PAD Rates

104192	195877	517243	1021348	3438555	16			
126952	148845	463918	701502	810110 1305503	15			
108472	141405	316614	559316	1634533	14			
102713	115491	244740	342467	777203	13			
75118	96402	181269		700353				
96930	95720	169696		467854	11			
73008	109993	217828		390145			390145	
95644	146819	436360		9				
63164	205511	695058		740711	8			
92434	252686	1141657	:	716497	7			
99190	308877	666749		450631	6			
74388	227569	428141	:	303845	5			
65191	208781	316894		215909	4			
74255	136292	225245		174210	3			
47913	87973	141343		109521	2			
56636	70764	117394		99875	1			
D	С	В		Α				

Single GAP Rate A side

Single GAP Rate C side

337827	317969	564306	1130139	3099412		16
371522	352179	450414	857140	959509	2120046	15
290171	243695	327976	495573	173	1054	14
299243	247076	232961	538902	783	996	13
160621	141773	188970		864246		12
150126	151117	191629		440642		11
108167	149738	252794		408700		10
115877	199114	495428	616929			9
79836	251718	1864533	734468			8
80060	392448	1217275		666246		7
75215	364207	811871		452638		6
83399	234562	556177	:	332759		5
72265	233807	335505		246885		4
74643	153426	219558		183348		3
59345	151333	154399		126601		2
60419	85587	133609		98047		1
D	С	В		А		

- M5 C Side has higher rates in C-D/11-16 (~factor 2 in ALL FEBs...)
- In both sides there is a clear back-splash effect from a LHC downstream magnet (visible also in the online monitor plots)
- In M5 we could move 8 M5R3 chambers to R4 and produce 8 new M5R3 with pads 4 times smaller
 → we should produce a total of at least 28 new M5R3 chambers with pads 4 times smaller
- The **back-splash from LHC should be reduced** adding more material (as done already behind M5)

M2 Physical Pad Rates: Minimal Scenario

Single GAP Rate

888508	626626	484114	1196911	2393785		16
718984		342880	1060163	1343243	<mark>2011942</mark>	15
1005964	887096	336895	702720	1353	3002	14
599624	660621	227168	415209	800	939	13
317666	571913	176578		576575		12
416351	439190	122435	:	355191		11
387599	376725	94968		221157		10
366731	284994	61749	141423			9
241045	322286	587643	1169029			8
227643	176287	380711		739384		7
216651	167767	319282		545444		6
170168	120169	235176		371426		5
75545	113410	198701		295698		4
88459	96136	156358	208573			3
112322	105519	166151		206213		2
105804	121603	175523		200132		1
D	С	В		А		

2357528 4201337 D С В Α

Bi-GAP Rate

• 5 M2R3 and 35 M2R4 to be replaced

- Minimal scenario:
 - Move 5 M2R3 to R4 and build 5 new M2R3 with pads 4 times smaller → 20 new M2R3 1/4 pad size
 - Build: (33-5)x4 = 112 new M2R3 chambers to be put in R4 \rightarrow 112 new M2R3 same pad size
 - → A total of **132 new chambers**

M2 Physical Pad Rates: "Ideal" Scenario

Single GAP Rate

888508	626626	484114	1196911	2393785		16
718984		342880	1060163	1343243	<mark>2011942</mark>	15
1005964	887096	336895	702720	1353	3002	14
599624	660621	227168	415209	415209 800939		13
317666	571913	176578		576575		12
416351	439190	122435	:	355191		11
387599	376725	94968	:	221157	21157	
366731	284994	61749	141423			9
241045	322286	587643	1169029			8
227643	176287	380711		739384		7
216651	167767	319282		545444		6
170168	120169	235176	:	371426		5
75545	113410	198701	:	295698		4
88459	96136	156358	:	208573		3
112322	105519	166151	206213			2
105804	121603	175523	200132			1
D	С	В		А		

2357528 4201337 D С В Α

Bi-GAP Rate

- Given the high number of chambers to be replaced in order to give the detector a "reasonable" shape (~160 out of 240), we could also consider the possibility to build a **completely new M2.** Rates are in the range:
 - R3: 2-20 kHz/cm²
 - R4: 1-10 KhZ/cm²
- This would mean to build 48 new M2R3 and 192 new M2R4 → a total of 240 new chambers
- Clearly there are several intermediate scenarios between the minimal and "Ideal"

Summary of chambers to be produced (including R1&R2)

- R1 and R2 all stations: (12+24)x4 = 144
- R3 and R4:
 - Mimimal Option:
 - M2: 132
 - M3: 20
 - M4:20
 - M5:28

→tot: 200 chambers (+ spares) to be produced, technology to be decided

- "Ideal" Option:
 - M2: 240 (full station)
 - M3: 32
 - M4: 32
 - M5: 32

→tot: 336 chambers (+ spares) to be produced

→ the total number of chambers to be produced is from 344 to 480 (+ spares)

"Reasonable" Scenario

- R1 and R2 all stations: (12+24)x4 = 144 RWells
- R3 and R4:
 - Reasonable Option:
 - M2: ?? (to me a New M2)
 - M3: 32
 - M4: 32
 - M5: 32

→tot: 96 + M2 → chambers (+ spares) to be produced, technology to be decided

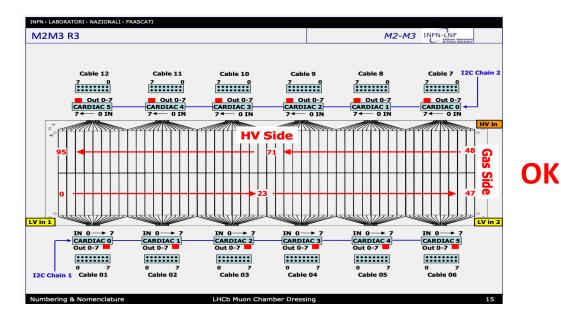
- In this scenario we can re-use:
 - all the M3R4, M4R4, M5R4 MWPCs → 192x3 = 576
 - M3,M4,M5: 16 R3 MWPC/station → 16x3 = 48
- A total of at least (no M2) 624/1104 MWPCs can be reused: ~56%

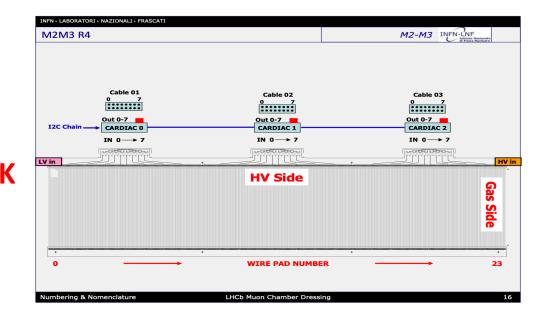
251255	525425	448521	2040193	3101110	16	
241486	440012	356154	1768823	2139075 55	76623 15	
196217	368821	266894	931428	2667673	3 14	
182503	276138	185935	616449	148903	5 13	
128469	201843	131313	6	21883	12	
121705	144621	91560	3	25791	11	
92416	112227	65635	-	79337	10	
87110	81455	45391		94095	9	
62278	61257	123841	2	14145	8	
60868	50531	86372	1	141288		
43554	40398	69432	1	00593	6	
56314	30305	49689		69207	5	
32266	27071	41144		52560	4	
35472	21817	31314		38490	3	
32625	20055	28638		33563	2	
30632	19735	26412		29696	1	
D	С	В		Α		

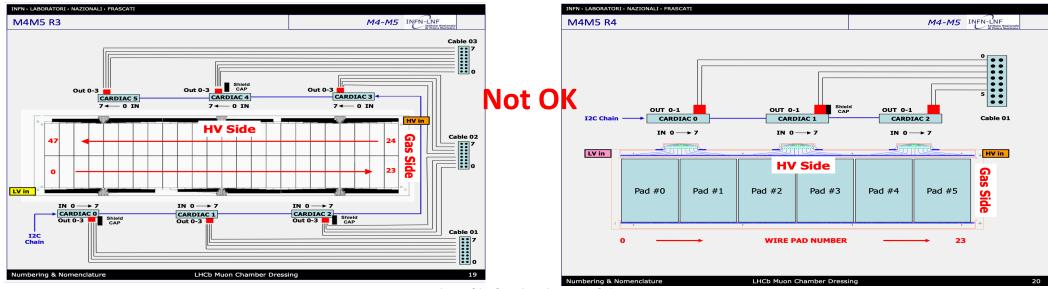
Move 8 R3 chambres to R4 in Stations M3, M4, M5

Replace the FEBs on: 480 chambers

roposed Configuration	on for M3,M4,M5			
		New M3 Chambers		1
Present M3	Present M3	(pads 4 time	RWells	1
Chambers	Chambers	smaller)	ens	1
		Smallery		1
				-
	Present M3		New M3 Chambers	-
		Chambers	(pads 4 time smaller)	
D	C work	ing file for the design of the Muon@L	JPG2 A	


Electronics (I)


- Which electronics will be used in the new detector is clearly of paramount importance
- Also in this case more options are on the table, with reference to the detector options outlined before:
 - Keep the SAME electronics in all the re-used chambers: FEB, nODEs, TELL40:
 - Pros:
 - Extension of signal, control, LV cables to the new position (<5m) is possible
 - Many FEBs spare would be available from R1 and R2 (and M1)
 - No constraints on new electronics for R1 and R2 (no need of back-compatibility)
 - Cons:
 - The electronics would be >30 years old
 - More cables (960) and new connectors (576) should be added in M4 and M5 to read physical pads
 - More nODE/TELL40 are needed, as we would remove ALL IBs (to be quantified)
 - Keep the know how of a very old electronics (especially FEBs)
 - Compatibility with new DAQ to be understood
 - We should carefully monitor the present FEBs "mortality" rate


Electronics (II)

- Also in this case more options are on the table, with reference to the detector options outlined before:
 - Put NEW electronics in all the re-used chambers:
 - Pros:
 - Better reliability and less maintenance
 - Same for the whole detector
 - Replace signal/control copper cables from detector to muon towers (huge amount! ⁽ⁱ⁾) with fibers
 - Cons:
 - More expensive option
 - Old MWPCs set constraints to its design, new FEBs should be electrically and mechanically compatible
 - Its replacement will take time (to be carefully quantified), given also the RP restrictions
- In the "reasonable" scenario we reuse at least 624 MWPCs, 576 R4 and 48 R3 (in M3,M4,M5)
- \rightarrow how much time can take to replace the electronics on 624 MWPCs?
- \rightarrow Is it worth to keep the same electronics on ~55% of the detector?

Cables per FEB

working file for the design of the Muon@UPG2

Additional Cables in M4 and M5

- M2R3-4 and M3R3-4 are OK: 1 cable per each FEB
- M4R3-4 and M5R3-4 less cables than FEBs (logical pads built on FEBs) → if we keep the same electronics, to acquire physical pads we have to put more cables:

	M2	M3	M4	M5
R3	0	0	3	3
R4	0	0	2	2

Signal cables **per chamber** to be added to split logical pads

- This means that if we want to use the old electronics and **read physical pads in M4+M5**:
 - in R4 we have to add: 192 x 2cables/cmb x 2stations = 768 cables and put new connector in the existing one: 384 connectors
 - In R3, in the "reasonable" scenario: 32 x 3cables/cmb x 2 stations = **192 cables** and put new connector in the existing ones: **192 connectors**

Conclusions

- Scaler rates are very useful to estimate the "raw" input rates expected in the new muon detector
- More scenarios can be envisaged for the full detector:
 - minimal option: R1+R2: 144, R3+R4: 204 (+ spares) → tot: 344 + spares
 - "Ideal" option: R1+R2: 144, R3+R4: 312 (+ spares) → tot: 480 + spares
 - Technology (for new R3 and R4) to be decided
- Of paramount importance is to carefully evaluate whether to keep the same electronics or replace it with the new one

Next steps

- Take more scalers runs to:
 - Verify the present results
 - Measure the ACTUAL reduction factor for the additional material put in front of M2 (now only MC estimates)
 - Measure directly the fraction of correlated hits (fc) by switching off gaps
- Open chambers (MWPCs and GEMs) to check for ageing effects:
 - Two M1R2 chambers ready (postponed due to covid)
 - GEMs....??
- Monitor carefully the FEBs mortality rate in Run3

Additional Material

Iron Wall Reduction Factors

Table 3: Average occupancy in each station/region of the muon detector as obtained from simulation in phase 1 upgrade conditions, with the detector configuration foreseen after LS2 (HCAL) and with different options for the additional shielding in place of HCAL, as described in the text; for M2 station, occupancy reduction factors are given between parethesis for each shielding scenario with respect to the HCAL configuration; for M2R4 region, results are splitted into M2R4in and M2R4out, following the definition of fig. 1; *statistical errors to be added*.

Stat. Reg.	HCAL	option A	option B	option C	option D
M2R1	54.5	34.8(0.64)	32.6 (0.60)	32.5(0.60)	31.3 (0.58)
M2R2	42.1	17.0 (0.40)	14.7(0.35)	13.2(0.31)	13.2 (0.31)
M2R3	19.0	8.0 (0.42)	9.0(0.47)	7.0(0.37)	6.8 (0.36)
M2R4in	6.1	3.7(0.61)	15.2(2.49)	12.0(1.97)	7.5 (1.2)
M2R4out	6.6	6.0(0.91)	11.2(1.7)	5.9(0.89)	5.1 (0.80)
M3R1	34.2	31.9	31.9	31.7	32.1
M3R2	17.3	16.2	16.1	16.2	16.0
M3R3	11.0	10.4	10.5	10.4	10.4
M3R4	6.0	5.5	6.7	6.3	6.0
M4R1	9.6	9.3	9.4	9.3	9.2
M4R2	5.2	5.1	5.1	5.1	5.1
M4R3	3.2	3.1	3.1	3.0	3.0
M4R4	1.3	1.2	1.6	1.4	1.3
M5R1	7.6	7.4	7.5	7.4	7.5
M5R2	3.8	3.6	3.6	3.7	3.7
M5R3	2.1	2.0	2.0	2.0	2.0
M5R4	0.8	0.8	0.9	0.8	0.8

Fraction of correlated hits: f_c

R(fc') = R(fc)*k'/k											
k'/k	fc=0	fc=0,1	fc=0,2	fc=0,3	fc=0,4	fc=0,5	fc=0,6	fc=0,7	fc=0,8	fc=0,9	fc=1
fc'=0	1,00	0,85	0,75	0,68	0,64	0,60	0,57	0,55	0,53	0,51	0,50
fc'=0,1	1,18	1,00	0,89	0,81	0,75	0,71	0,68	0,65	0,63	0,61	0,59
fc'=0,2	1,33	1,13	1,00	0,91	0,85	0,80	0,76	0,73	0,71	0,68	0,67
fc'=0,3	1,46	1,24	1,10	1,00	0,93	0,88	0,84	0,80	0,77	0,75	0,73
fc'=0,4	1,57	1,33	1,18	1,08	1,00	0,94	0,90	0,86	0,83	0,81	0,79
fc'=0,5	1,67	1,41	1,25	1,14	1,06	1,00	0,95	0,91	0,88	0,86	0,83
fc'=0,6	1,75	1,48	1,31	1,20	1,11	1,05	1,00	0,96	0,93	0,90	0,88
fc'=0,7	1,82	1,54	1,37	1,25	1,16	1,09	1,04	1,00	0,97	0,94	0,91
fc'=0,8	1,89	1,60	1,42	1,29	1,20	1,13	1,08	1,04	1,00	0,97	0,94
fc'=0,9	1,95	1,65	1,46	1,33	1,24	1,17	1,11	1,07	1,03	1,00	0,97
fc'=1	2,00	1,69	1,50	1,37	1,27	1,20	1,14	1,10	1,06	1,03	1,00
k = (1+3fc)/(1+fc)											
k' = (1+3fc')/(1+fc')											

Logical Pad & Physical Pad

PHYSICAL pad granularity

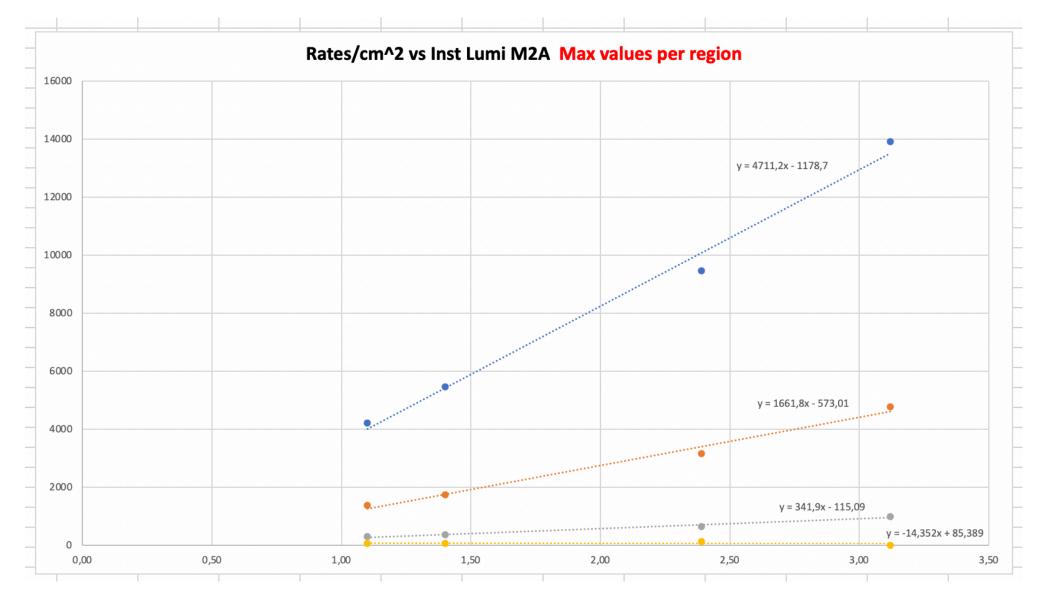
$(\#x \times \#y)$	M2		М3		M4		M5	
	Anodes	Cathodes	Anodes	Cathodes	Anodes	Cathodes	Anodes	Cathodes
R1	48 × 1	8 ×8	48 × 1	8 ×8		12 × 8		12 × 8
R2	48 × 1	8 ×8	48 × 1	8 × 8		12 imes 4		12 × 4
R3		48 × 2		48 × 2		24×2		24 imes 2
R4	24 imes 1		24 imes 1		24 imes 1		24 imes 1	

Physica	al pad size (physical,	not logical)		
	M2	M3	M4	M5
R1	3.8x3.1=11.7	4,1x3,4= <mark>13,7</mark>	2,9x3,6= <mark>10,5</mark>	3,1x3,9= <mark>12,1</mark>
R2	7,6x3,1= <mark>23,4</mark>	8,2x3,4= <mark>27,3</mark>	5,8x7,3= <mark>42,0</mark>	6,2x7,7= <mark>47,8</mark>
R3	2,5x12,5= <mark>31,3</mark>	2,7x13,5= <mark>36,5</mark>	5,8x14,5= <mark>84,1</mark>	6,2x15,5= <mark>96,1</mark>
R4	5,0x25,0= <mark>125</mark>	5,4x27,0= 145,8	5,8x29,0= <mark>168</mark>	6,2x30,9= <mark>191,6</mark>

LOGICAL pad granularity

$(\#x \times \#y)$	M2	М3	M4	M5
R1	48 × 8	48 × 8	12×8	12 × 8
R2	48×4	48×4	12×4	12 × 4
R3	48 × 2	48 × 2	12×2	12 × 2
R4	24 imes 1	24 imes 1	6 × 1	6 imes 1

RWells Expected PAD Size


Rwells	expected PAD Si	ze		
	M2	M3	M4	M5
R1	0,94 x 0,89	1,02 x 0,96	1,09 x 1,04	1,17 x 1,11
R2	0,94 x 1,78	1,02 x 1,92	1,09 x 2,08	1,17 x 2,22
R3	2,5 x 3,1	2,7 x 3,4	2,9 x 7,2	3,1 x 7,8
R4				

Rwells	Number of PAD	/смв		
	M2	M3	M4	M5
R1	32 x 28	32 x 28	32 x 28	32 x 28
R2	64 x 14	64 x 14	64 x 14	64 x 14
R3	48 x 8	48 x 8	48 x 4	48 x 4
R4				

wells Nu	mber of Ch	ambers (4 g	aps each)	
	M2	M3	M4	M5
R1	12	12	12	12
R2	24	24	24	24
R3	??	32	32	32
R4				

Rwells	Active Area Dim	ension		
	M2	M3	M4	M5
R1	30 x 25	32,5 x 27	35 x 29	37,5 x 31
R2	60 x 25	65 x 27	70 x 29	75 x 31
R3	120 x 25	129,6 x 27	139,3 x 29	148,8 x 31
R4				

Rate/cm² vs lumi

"Frankenstein" Scenario for M2 (???)

rows	Present M3 Chambers	Present M3 Chambers	New M3 Chambers (pads 4 time smaller): Rwells (?)	RIN/ ells	16 15 14 13
9			New M3 Chambers (pads 4 time smaller): Rwells (?)	New M3 Chambers	12
				(pads 4 time smaller):	11
	Rate > 5	kHz/cm2		Rwells (?)	10
				. ,	9
			Rate > 5kHz/cm2		8
				Rate > 5kHz/cm2	7
					6
					5
					4
					3
					2
					1
	D	C		Α	

Possible Scenario for M2 (II)