Instrumental asymmetries

Tracking meeting June 2, 2022

M. Dorigo, D. Ghosh, M. Mantovano, S. Raiz (University and INFN Trieste)

Motivation

- Measurement \mathscr{A}_{CP} asymmetries are a key part of the Belle II physics program.
- To measure \mathscr{A}_{CP} we need to subtract detection asymmetries (\mathscr{A}_{det}) due to:
 - 1. Different interaction cross section of particle/antiparticle with matter.

- Cannot trust simulation to model \mathscr{A}_{det} : need to measure them in data.

2. Different reconstruction and PID efficiencies for oppositely charged particles.

Status

- Can obtain $\mathscr{A}_{det}(K) = \mathscr{A}_{det}(K\pi) \mathscr{A}_{det}(\pi)$
- Already measured last year by S.Raiz *et al.* with $\mathcal{O}(1 3\%)$ precision. https://docs.belle2.org/record/2038?ln=en

- We improve over this work
- Today: how to determine \mathscr{A}_{det} for physics analyses.

• We determine $\mathscr{A}_{det}(K\pi)$ and $\mathscr{A}_{det}(\pi)$ using $D^0 \to K^-\pi^+$ and $D^+ \to K^0_s\pi^+$ decays.

-better selection, measurement of \mathscr{A}_{det} dependences, remove \mathscr{A}_{FR} asymmetries

• \mathscr{A}_{CP} known for $D^0 \to K^- \pi^+$ and D^+ – $\mathscr{A}_{CP}(K\pi) = 0$ and $\mathscr{A}_{CP}(K_s^0\pi) = (-0.41 \pm 0.09)\%$

• \mathscr{A}_{FR} remains to be subtracted.

$$\rightarrow K_s^0 \pi^+$$
:

Forward-backward production asymmetry

- \mathscr{A}_{FR} contribution due to $\gamma^* Z^0$ interference in $e^+e^- \to c\bar{c}$.
- \mathscr{A}_{FR} is antisymmetric as a function of $cos(\theta^*)$ (angle of D momentum in the CMS).
- Cancel \mathscr{A}_{FB} by combining measurement of \mathscr{A}_{obs} in opposite bins of $cos(\theta^*)$:

NB: Assume that \mathscr{A}_{det} is not antisymmetric as a function of $cos(\theta^*)$.

https://arxiv.org/abs/1406.6311

Sample and selection

Data: Proc12 + buckets16-25 (189.26 fb^{-1}).

SignalMC: from MC14ri-a (300 fb^{-1}).

Vertex fit on D: treefit

Applied the latest beam energy and momentum corrections.

Tracks:thetaInCDCAcceptance + Idrl < 0.5 + Idzl < 3 + chiProb>0 + CDCHits>0

 $p_CMS(D) > 2.5 \text{ GeV/c} +$ $0.4942 \text{GeV}/c^2 < m(\text{Ks}) < 0.5014 \text{Gev}/c^2 +$ Significance of distance (Ks) >44.5

 $n_{sig} \sim 3.71 \times 10^6$

 $D^+ \rightarrow K_{\rm c}^0 \pi^+$ 3 MeV/c² 00006 80000 Belle II 90000⊨ Data 2022 (preliminary) — Total fit $L dt = 189.26 \text{ fb}^{-1}$ <u>8</u> 70000 $\cdots D \rightarrow K_{\rm S}^0 \pi$ Candidates ---- Background 60000E 50000 40000E 30000E 20000E 10000E 1.86 1.88 1.82 1.84 1.9 $K_{\rm S}^0 \pi$ mass (GeV/c²) $n_{sig} \sim 3.18 \times 10^5$

7

$\mathscr{A}_{det}(K\pi) \text{ from } D^0 \to K^-\pi^+$

Determining \mathcal{A}_{det} dependence in data

- Study $\mathscr{A}_{det}(K\pi)$ binning the sample in:
 - p: interaction probabilities with matter depend on momentum;
 - $cos(\theta)$: different material budget traversed by the particle;
 - CDC hits: tracking and dE/dx resolution depends on number of hits, and these differ on average for track with opposite curvature.

There might be also other dependences, but we identify these 3 as those only relevant at the current level of precision.

• Study $\mathscr{A}_{det}(K\pi)$ as a function of kaon variables.

$$\mathscr{A}_{det}(K\pi) \simeq \mathscr{A}_{det}(K) + \mathscr{A}_{det}(\pi)$$

$$\mathcal{A}_{det}(K)$$
 :

 $\gg \mathscr{A}_{det}(\pi)$

Check marginal distribution:

$\mathscr{A}_{det}(K\pi)$ dependence on CDC hits

Integrate over all kinematic variables.

$\mathscr{A}_{det}(K\pi)$ for physics analyses

- 1. Split the control channel in bins of CDC hits;
- $p, cos(\theta)$, CDC hits distributions of target analyses can be different from our control channel. • Correct the distributions of the control channel to match those of any target decay:
- - 2. In each bin:
 - A. Correct the $(p, cos(\theta))$ distributions of the control channel (weights from MC);
 - B. Determine \mathscr{A}_{det} on the corrected-sample.
 - 3. Average the \mathscr{A}_{det} values considering the CDC hits distribution of the target decay (known data-MC discrepancy (drift-time mismodeling) \rightarrow take it from data).

 $\mathscr{A}_{det}(K\pi)$ closure-test with MC

• Consider $B^0 \rightarrow K\pi$ decays (CS>0.95, KaonID>0.25).

 $\mathscr{A}_{det}(K\pi) = 0.0012 \pm 0.0015$ (target).

• $D^0 \rightarrow K\pi$ control channel (CS>0.50, KaonID>0.25).

 $\mathscr{A}_{det}(K\pi) = -0.0076 \pm 0.0007$ (start value).

 p_K distributions

 $\mathscr{A}_{det}(K\pi)$ closure-test with MC

The points are placed at the average of the CDChits distribution in the bin.

 $\mathscr{A}_{det}(K\pi)$ closure-test with MC

$\mathscr{A}_{det}(K\pi)$ closure-test with MC

in agreement with

• Average $\mathscr{A}_{det}(K\pi)$ values from corrected D^0 sample, considering CDC hits distribution of B^0 :

 $\mathscr{A}_{dot}(K\pi) = 0.0015 \pm 0.0007$ (after correction)

 $\mathcal{A}_{det}(K\pi) = 0.0012 \pm 0.0015$ (target)

• We checked the procedure for different PID and CS selections and get expected results.

 $\mathscr{A}_{det}(\pi)$ from $D^+ \to K^0_{s}\pi^+$

$\mathscr{A}_{det}(\pi)$ dependence on CDC hits

• Study $\mathscr{A}_{det}(\pi)$ as a function of pion variables. Assume $\mathscr{A}_{det}(K_S^0) = 0$.

Integrate over all kinematic variables.

$$\mathscr{A}_{\rm obs} = \frac{N_{D^-} - N_{D^-}}{N_{D^-} + N_{D^-}}$$

$\mathscr{A}_{det}(\pi)$ dependence on momentum and polar angle

 $\mathscr{A}_{det}(\pi)$ as a function of π 's momentum

Strong dependence of \mathscr{A}_{det} on p_{π} and $cos_{\pi}(\theta)$ in bins of CDC hits of pions

$\mathscr{A}_{det}(\pi)$ and $\mathscr{A}_{det}(K)$

- using this control channel is ongoing.
- We can also use $D^0 \to K^- \pi^+$ and D^+
 - compute $\mathscr{A}_{det}(K\pi)$ using $D^0 \to K^-\pi^+$ channel;
 - 2. Weight the π distributions of D
 - 3. Compute $\mathscr{A}_{det}(K) = \mathscr{A}_{det}(K\pi)$

• The method is the same to compute $\mathscr{A}_{det}(\pi)$ using $D^+ \to K^0_c \pi^+$ for a given decay. • A closure-test to compute $\mathscr{A}_{det}(\pi)$ for $B^+ \to \rho^+(\to \pi^+\pi^0)\rho^0(\to \pi^+\pi^-)$ decay

$$^{+} \rightarrow K_{s}^{0}\pi^{+}$$
 to compute $\mathscr{A}_{det}(K)$:

1. Given $(p_K, cos_K(\theta), CDChits(K))$ distributions of a target decay, we can

$$^+ \rightarrow K_s^0 \pi^+$$
 to match those of $K\pi$;

$$(\pi) - \mathscr{A}_{det}(\pi).$$

Summary

- Measured \mathscr{A}_{det} for $K\pi$ and π , with a precision of $\mathcal{O}(1^{o}/_{oo})$ and $\mathcal{O}(3^{o}/_{oo})$ using $D^0 \to K^- \pi^+$ and $D^+ \to K_c^0 \pi^+$.
- First study of the dependence of \mathscr{A}_{det} . Found large dependence as a function of p, $cos(\theta)$ and CDChits of the tracks.
- Developed a method to compute \mathscr{A}_{det} from control channel for any given decay, taking into account these dependences.
- Will release a tool for analysts and document everything in a supporting note. • Can be used in analyses targeting ICHEP, e.g. GLW with $B^+ \rightarrow D^0 h^+$, and
- \mathscr{A}_{CP} in $B^+ \to h^+ \pi^0$.

Backup

$\mathscr{A}_{det}(K\pi) \text{ from } D^0 \to K^-\pi^+$

$\mathscr{A}_{det}(K\pi)$ kinematics dependences: data vs MC

Check marginal distribution: integrate over $cos_{K}(\theta)$ and CDC hits of kaon.

Check marginal distribution: integrate over $p_K(\theta)$ and CDC hits of Kaon.

0.9 Icos_⊾(θ)I

$\mathscr{A}_{det}(K\pi)$ dependence on momentum

Interaction probabilities between K^+/K^- depend on momentum.

$\mathscr{A}_{det}(K\pi)$ dependence on polar angle

$\mathscr{A}_{det}(K\pi)$ dependence on CDC hits: data vs MC

Integrate over all kinematic variables.

Known Data-MC discrepancy due to CDC drift-time mismodeling.

Strong dependence of \mathscr{A}_{det} on CDC hits of kaon

27

$\mathscr{A}_{det}(K\pi)$ dependence on azimuthal angle

Integrate over all kinematic variables and CDC hits of Kaon.

The circled points represent the \mathscr{A}_{det} values in the ϕ_K region in which there are two layers of PXD (more material). In any case, we assume no dependence on ϕ_K .

 $\mathscr{A}_{det}(\pi)$ from $D^+ \to K^0_{s}\pi^+$

$\mathscr{A}_{det}(\pi)$ kinematics dependences : data vs MC

Check marginal distribution: integrate over $cos_{\pi}(\theta)$ and CDC hits of pion.

Check marginal distribution: integrate over $p_{\pi}(\theta)$ and CDC hits of pion.

30

$\mathscr{A}_{det}(\pi)$ dependence on CDC hits: data vs MC

Known Data-MC discrepancy due to CDC drift-time mismodeling.

Integrate over all kinematic variables.

Strong dependence of \mathscr{A}_{det} on CDC hits of pion. 31