Measurement of ⁶⁴Ni(n,γ) cross section at CERN n_TOF ⁺.

Michele Spelta

GIANTS XI Workshop Caserta, 20th – 21st October 2022

Original Proposal

Some Extremely-Metal Poor stars were found to show abundance patterns that scale as the solar r-component

 $N_r = N_{sun} - N_s$

«Massive stars contribute significantly to the abundances between Fe and Zr» (Weak s-process) The role of Fe and Ni

for s-process nucleosynthesis in the early Universe

and for innovative nuclear technologies

J.L. Tain^{*},¹ C. Domingo-Pardo,¹ F. Bečvář,² E. Berthoumieux,³ F. Calviño,⁴ D. Cano-Ott,⁵
P. Cennini,⁶ N. Colonna,⁷ G. Cortes,⁴ I. Dillmann,^{8,9} W. Dridi,³ E. González,⁵
A. Guerra,⁵ C. Guerrero,⁵ F. Gunsing,³ M. Heil[†],⁹ F. Käppeler,⁹ D. Karadimos,¹⁰
P. Koehler,¹¹ C. Lamboudis,¹² H. Leeb,¹³ S. Marrone,⁷ T. Martinez,⁵ C. Massimi,¹⁴
A. Mengoni,¹⁵ P.M. Milazzo,¹⁶ R. Plag,⁹ G. Tagliente,⁷ P. Vaz,¹⁷ V. Vlachoudis[‡],⁶ and The n TOF Collaboration

Abstract

The early universe was enriched in heavy elements by massive stars via their s- and r-process contributions. Ultra metal-poor stars were found to show abundance patterns that scale exactly with the solar r component. While this holds exactly for elements heavier than barium, there is still confusion about significant discrepancies in the mass region below $A \leq 120$. It is known that massive stars contribute significantly to the abundances between Fe and Zr. This so-called weak s-process component was found to exhibit large uncertainties due to the poorly known cross sections, especially in the Fe-Ni region. In view of this problem it is proposed to perform accurate state-of-the art measurements on highly enriched samples of the stable Fe and Ni isotopes at the n_TOF facility. Transformation of these results into significantly improved stellar cross section rates will allow to disentangle the s and r contributions observed in the oldest stars for a reliable comparison with galactic chemical evolution models. These results are also very important for the design of advanced reactor concepts.

The role of Fe and Ni

for s-process nucleosynthesis in the early Universe

and for innovative nuclear technologies

Measurement of 64 Ni(n,y) cross section at CERN n_TOF

Original Proposal

Original Proposal

54, 56, 57, 58**Fe**

Isotopes for Science, Medicine and Industry

P.O. Box 29475 San Francisco CA 94129 USA Tel: 415-440-4433 Fax: 415-563-4433

QUOTATION

<u>Confidential Business Matte</u>r

DATE: June 30, 2021

QUOTE NUMBER: 210630-I/R

PROPOSED DESCRIPTION UNIT PRICE Nickel-64 (Ni-64), metal powder ~4 weeks ARO 2000 mg \$31.50 per mg Isotopic Enrichment: 99,33atom% Harmonized Code: - 2845.90.0000 (USA) \$31.50 per mg \$31.50 per mg	QUOTATION SUMMARY					
Nickel-64 (Ni-64), metal powder ~4 weeks ARO 2000 mg \$31.50 per mg Isotopic Enrichment: 99,33atom% Harmonized Code: - 2845.90.0000 (USA) ()	DESCRIPTION	PROPOSED DELIVERY	QUANTITY	UNIT PRICE	SUBTOTAL	
	Nickel-64 (Ni-64), metal powder Isotopic Enrichment: 99,33atom% Harmonized Code: - 2845.90.0000 (USA)	~4 weeks ARO	2000 mg	\$31.50 per mg	\$63,000.00	

Measurement of ⁶⁴Ni(n,γ) cross section at CERN n_TOF

GIANTS XI Workshop

The role of Fe and Ni

for *s*-process nucleosynthesis in the early Universe

and for innovative nuclear technologies

What has changed?

«The measurement [...] can be

10

10^t

Measurement of $^{64}Ni(n,\gamma)$ cross section at CERN n_TOF

GIANTS XI Workshop

EAR1 - Normal water EAR1 - Borated water

EAR2

Motivation (1)

«The cross sections of the stable isotopes of Fe and Ni are important for the **quantitative description of the s process in massive stars**»

The role of Fe and Ni

for s-process nucleosynthesis in the early Universe

and for innovative nuclear technologies

J.L. Tain^{*},¹ C. Domingo-Pardo,¹ F. Bečvář,² E. Berthoumieux,³ F. Calviño,⁴ D. Cano-Ott,⁵
P. Cennini,⁶ N. Colonna,⁷ G. Cortes,⁴ I. Dillmann,^{8,9} W. Dridi,³ E. González,⁵
A. Guerra,⁵ C. Guerrero,⁵ F. Gunsing,³ M. Heil[†],⁹ F. Käppeler,⁹ D. Karadimos,¹⁰
P. Koehler,¹¹ C. Lamboudis,¹² H. Leeb,¹³ S. Marrone,⁷ T. Martinez,⁵ C. Massimi,¹⁴
A. Mengoni,¹⁵ P.M. Milazzo,¹⁶ R. Plag,⁹ G. Tagliente,⁷ P. Vaz,¹⁷ V. Vlachoudis[‡],⁶ and The n_TOF Collaboration

Abstract

The early universe was enriched in heavy elements by massive stars via their s- and r-process contributions. Ultra metal-poor stars were found to show abundance patterns that scale exactly with the solar r component. While this holds exactly for elements heavier than barium, there is still confusion about significant discrepancies in the mass region below $A \leq 120$. It is known that massive stars contribute significantly to the abundances between Fe and Zr. This so-called weak s-process component was found to exhibit large uncertainties due to the poorly known cross sections, especially in the Fe-Ni region. In view of this problem it is proposed to perform accurate state-of-the art measurements on highly enriched samples of the stable Fe and Ni isotopes at the n_TOF facility. Transformation of these results into significantly improved stellar cross section rates will allow to disentangle the s and r contributions observed in the oldest stars for a reliable comparison with galactic chemical evolution models. These results are also very important for the design of advanced reactor concepts.

Motivation (2)

⁵⁶Fe(n,γ), ⁶⁴Ni(n,γ) and ¹³⁸Ba(n,γ) reactions significantly affect the uncertainty in the abundances of a large number of nuclides produced in low-mass AGB stars. MNRAS 478, 4101–4127 (2018) Advance Access publication 2018 May 5

Uncertainties in s-process nucleosynthesis in low-mass stars determined from Monte Carlo variations

G. Cescutti,¹*† R. Hirschi,^{2,3}† N. Nishimura,⁴† J. W. den Hartogh,^{2,5}† T. Rauscher,^{6,7}† A. St. J. Murphy⁸† and S. Cristallo^{9,10}

¹DNAF, Oxnervatorio Axtronomico di Trieste, I-34131 Trieste, Italy
 ²Astrophysics ganap, Lennard-Jones Laboratories, Keele University, STS 5BG Staffordshire, UK
 ³Kavil Institute for the Physics and Mathematics of the University, WPI), University of Tokyo, 5-1-5 Kashbeanoha, Kashbea 277-8583, Japan
 ³Kavil Institute for Theoretical Physics, Ryoto University, Kyoto 606-8502, Japan
 ⁵Kavil Othervatory, Konkoly Thege Miklós út 15-17, H-1121 Bakapest, Hangary
 ⁶Department of Physics, University of Basel, Klingelbergate 82, CH-4056 Basel, Switzerland
 ⁷Contre for Astrophysics Research, University of Ediobargh, Ediobargh Ediobargh Ediobargh UK
 ⁸SUPA, School of Physics and Astronomy, University of Ediobargh, Ediobargh EH9 3FD, UK
 ⁹INAF, Oxnervatorio Axtronomico d'Abrazzo, 1-64100 Teramo, Baly
 ¹⁰INFN-Sezione di Peragia, 1-06123 Peragia, Italy

CrossMark

Magnetic-buoyancy-induced Mixing in AGB Stars: Presolar SiC Grains

THE ASTROPHYSICAL JOURNAL LETTERS, 897:L25 (8pp), 2020 July 10

© 2020. The American Astronomical Society. All rights reserved.

Diego Vescovi^{1,2,3}, Sergio Cristallo^{2,3}, Maurizio Busso^{2,4}, and Nan Liu^{5,6} ¹Gran Sasso Science Institute, Viale Francesco Crispi, 7, I-67100 L'Aquila, Italy; diego.vescovi@gssi.it ²INFN, Section of Perugia, Via A. Pascoli snc, I-06123 Perugia, Italy ³INAF, Observatory of Abruzzo, Via Mentore Maggini snc, I-64100 Teramo, Italy ⁴University of Perugia, Department of Physics and Geology, Via A. Pascoli snc, I-06123 Perugia, Italy ⁵Laboratory for Space Sciences and Physics Department, Washington University in St. Louis, St. Louis, MO 63130, USA ⁶McDonnell Center for the Space Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA *Received 2020 May 25; revised 2020 June 18; accepted 2020 June 24; published 2020 July 9*

Abstract

Isotope ratios can be measured in presolar SiC grains from ancient asymptotic giant branch (AGB) stars at permillevel (0.1%) precision. Such precise grain data permit derivation of more stringent constraints and calibrations on mixing efficiency in AGB models than traditional spectroscopic observations. In this paper we compare SiC heavyelement isotope ratios to a new series of FRUITY models that include the effects of mixing triggered by magnetic fields. Based on 2D and 3D simulations available in the literature, we propose a new formulation, upon which the general features of mixing induced by magnetic fields can be derived. The efficiency of such a mixing, on the other hand, relies on physical quantities whose values are poorly constrained. We present here our calibration by comparing our model results with the heavy-element isotope data of presolar SiC grains from AGB stars. We demonstrate that the isotopic compositions of all measured elements (Ni, Sr, Zr, Mo, Ba) can be simultaneously fitted by adopting a single magnetic field configuration in our new FRUITY models.

Motivation (3)

«Recent magnetic AGB models were found to **disagree with respect to** ⁶⁴**Ni isotopic ratios measurements in presolar SiC grains**. The other Ni isotopic ratios well match the theoretical models.»

State of the art

Figure 1 Comparison of the MACS calculated with different libraries.

The Maxwellian Averaged Cross Section (MACS) suffers for **severe discrepancies** amongst the databases available in literature.

Measurement of $^{64}Ni(n,\gamma)$ cross section at CERN n_TOF

Experimental setup

Sample of **500 mg** Ni metal powder with enrichment **99.33% ^ of** ⁶⁴Ni, 1 cm radius

C₆**D**₆**liquid scintillators** (TED) (Low sensitivity to scattered n) ◄

Measurement of $^{64}Ni(n,\gamma)$ cross section at CERN n_TOF

Experimental setup

Sample of **500 mg** Ni metal powder with enrichment **99.33% • of** ⁶⁴Ni, 1 cm radius

sTED

(Low sensitivity to scattered n, higher neutron energies detectable)

Measurement of ⁶⁴Ni(n,γ) cross section at CERN n_TOF

Experimental setup

Measurements with different samples and without sample for background evaluation and normalization

Measurement of $^{64}Ni(n,\gamma)$ cross section at CERN n_TOF

Measurement of ⁶⁴Ni(n,γ) cross section at CERN n_TOF

The end

Reference

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Addendum of the Proposal INTC-P-208

Measurement of the neutron capture cross section of ⁶⁴Ni

G. Tagliente¹, G. Cescutti^{2,3}, N. Colonna¹, S. Cristallo^{4,5}, D. Diacono¹, C. Lederer-Wood⁶, C. Massimi^{7,8}, M. Mastromarco^{1,9}, A.M. Mazzone^{1,10}, P.M. Milazzo³, N. Sosnin¹¹, D. Vescovi¹²

- 1. Istituto Nazionale di Fisica Nucleare, Sez. di Bari, Italy
- 2. Università di Trieste, Dipartimento di Fisica, Trieste, Italy
- 3. Istituto Nazionale di Fisica Nucleare, Sez. Trieste, Italy
- 4. Istituto Nazionale di Astrofisica, Osservatorio Astronomico d'Abruzzo, Teramo, Italy
- 5. Istituto Nazionale di Fisica Nucleare, Sez. di Perugia, Italy
- 6. School of Physics and Astronomy, University of Edinburgh, United Kingdom
- 7. Istituto Nazionale di Fisica Nucleare, Sez. di Bologna, Italy
- 8. Università di Bologna, Dipartimento di Fisica e Astronomia, Bologna, Italy
- 9. Università degli Studi di Bari, Dipartimento Interateneo di Fisica, Bari, Italy
- 10. CNR, Istituto di Cristallografia, Bari, Italy
- 11. University of Manchester, United Kingdom
- 12. Goethe University Frankfurt, Max-von-Laue-Strasse 1, Frankfurt am Main 60438, Germany

The following document is an addendum to the proposal INTC-P-208 [1], approved in 2006, concerning the measurement of the neutron capture cross-section of highly enriched samples of the stable Fe and Ni isotopes. The proposed measurements aimed at improving the existing cross section data of interest for the *s*-process nucleosynthesis in *Massive* stars and for innovative nuclear technologies.

In the past years the neutron capture cross sections of the ^{54,57}Fe, ^{58,62,63}Ni isotopes has been successfully performed at the n_TOF experimental area 1 (EAR1), the results of this work together with the astrophysical implications are reported in several publications and conference proceedings [2,3,4].

The measurement of the ${}^{64}Ni(n,\gamma)$ has been postponed in the past due to the cost of the sample, while now it can be performed using small quantities of ${}^{64}Ni$, taking advantage of the higher neutron flux available