

GRAN SASSO SCIENCE INSTITUTE

Towards ${}^{14}N(p,\gamma){}^{15}O$ reaction measurement at LUNA-MV

Alessandro Compagnucci

The ¹⁴N(p, γ)¹⁵O and the CNO cycle

- The CNO Cycle is the main source of energy generation in massive main-sequence stars, accounts for ~1% in the Sun.
- The ¹⁴N(p,γ)¹⁵O is the slowest reaction of the CNO, controls its speed and energy production rate.

The ¹⁴N(p, γ)¹⁵O and the CNO cycle

- Solar CNO neutrino flux recently detected for the first time by Borexino (2020). → Solar metallicity probe.
- The result of Borexino disfavours "low metallicity" SSM prediction, but large uncertainties still remains. After CNO Flux itself, biggest contribution to the uncertainty budget from ${}^{14}N(p,\gamma){}^{15}O$ cross section.

GS SI

Uncertainties in ${}^{14}N(p,\gamma){}^{15}O$ cross section determination: The role of nuclear structure

- Most important transitions contributing to the total capture: 6.79 MeV excited state, g.s of ¹⁵O
- Secondary transitions: 6.17, 5.24, 7.28, 6.86, 5.18 MeV
- R-matrix analysis fails to provide a consistent view of both high and low energy data, why?

S

G

Underground Nuclear Astrophysics at LUNA

The accelerator system for the LUNA-MV project

- Energy range 0.3-3.5 MeV
- H⁺,He⁺,¹²C⁺,¹²C⁺⁺
- High current, energy stability below 10⁻⁵, uninterrupted operation time >24h
- Scientific program:
 - ¹⁴N(p,γ)¹⁵O
 - ${}^{12}C+{}^{12}C, {}^{22}Ne(\alpha,n){}^{25}Mg, {}^{13}C(\alpha,n){}^{16}O...$

lon specie	e Beam Intens	Beam Intensity (eµA)	
	TV range 0.3 MV-0.5 MV	TV range 0.5–3.5MV	
$^{1}H^{+}$	500	1000	
⁴ He ⁺	300	500	
¹² C ⁺	100	150	
¹² C ⁺²	60	100	

Beam intensity on target at different terminal voltage.

Sen, A. *et al.* (2019) 'A high intensity, high stability 3.5 MV Singletron[™] accelerator', *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 450, pp. 390–395. doi:<u>10.1016/j.nimb.2018.09.016</u>. S

G

S

Towards ${}^{14}N(p,\gamma){}^{15}O$ measurement @ LUNA-MV

- Low background measurement over a wide-energy range, in order to address the existing issues in the extrapolations
- Angular distribution
- Measuring weaker transitions
- Pilot LUNA-MV project

 → Verifing the performance
 of the accelerator

- Simulations and measurement planning
- Target production
- Target characterization
 - Atomki Tandetron
 - Luna-400
- Setup design and costruction

Simulations and measurement planning

- Angular distribution setup + Excitation function in close geometry simulated with Geant4.
- 3 HPGe detectors with ~120% relative efficiency
- Detectors at 10 cm from target, angles covered: 0°,45°,90°,135°...

Counting rates expected for GeGe in close

Beam time (h) to 3%, down to 250 keV, primary trans.

Transition	0 deg	90 deg
6.79	6.2	0.7
5.18	27.1	25.0
g.s (+ summing-in)	37.6	33. 6

- Simulations and measurement planning
- Target production
- Target characterization
 - Atomki Tandetron
 - Luna-400
- Setup design and costruction

Solid Targets production

Sputtered targets

(Matteo campostrini, Valentino Rigato @ LNL, Italy):

- Thin films on Ta backing produced using Reactive Magnetron Sputtering
- TiN or Me_xN_y , with Me= Ta, Nb, Zr on Ta backing.
- Sputtered TiN targets already proved to be durable and withstand well irradiation with high beam intensities.
- Higher Z metals promise reduction of the beam induced background.
 - \rightarrow Issues at higher energies with Ti(p, γ), Ti(p,n)

4 targets produced
 Characterization → RBS, NRRA

G S S I

Solid Targets production Implanted targets

(João Cruz @ IST, Lisbon - Under RADIATE Transnational Access):

• ¹⁴N on Tantalum

- Isotopically pure
- Ta_xN_y → Higher beam energy reachable, lower Beam Induced Background (¹⁵N(p,αγ) an issue at higher energies..)

4 targets produced
 Characterization → RBS, NRRA

G S

- Simulations and measurement planning
- Target production
- Target characterization
 - Atomki Tandetron
 - Luna-400
- Setup design and costruction

Solid Targets characterization

- Characterization campaigns performed to study target thickness, stability and beam-induced background.
- Atomki Tandetron, Hungary:
 - 278 keV ¹⁴N resonance scan
 - 429 keV ¹⁵N resonance scan

Solid Targets characterization

- Characterization campaigns performed to study target thickness, stability and beam-induced background.
- Atomki Tandetron, Hungary:
 - Beam induced background runs at 1.7 MeV: Implanted and sputtered targets vs. Ta Backing

Beam Induced Background, Ep = 1.7 MeV

G S S I

Solid Targets characterization

- Characterization campaigns performed to study target thickness, stability and beam-induced background.
- LUNA-400, LNGS, BGO Setup:
 - 278 keV ¹⁴N resonance scan
 - 340 keV ¹⁹F resonance

Yield (a.u.)

• Long Run to test target stability

Implanted profile before and after irradiation

4π BGO Sum Spectrum, E_p=100 keV

- Simulations and measurement planning
- Target production
- Target characterization
 - Atomki Tandetron
 - Luna-400
- Setup design and costruction

Setup design

 The support structure for the beamline and the detectors will be designed and constructed in collaboration with Bari INFN Mechanical Workshop

Outlook

- With the installation phase near conclusion, the accelerator facility is expected to achieve operational readiness by early 2023, scientific commissioning and data taking will follow.
- A renewed measurement of the ¹⁴N(p,γ)¹⁵O will provide high-quality data over a wide energy range to address the existing issues between low energy data and higher-energy extrapolation.

