Gruppi Italiani di Astrofisica Nucleare Teorica e Sperimentale

GANIS

Hotel Royal Viale Vittorio Veneto, 13 81020 Caserta CE

20-21

Осторев 2022

## The <sup>13</sup>C(a,n)<sup>16</sup>O cross section measurement at LUNA

#### G.F. Ciani

(on behalf of the LUNA collaboration) University of Bari & INFN Ba

giovanni.ciani@ba.infn.it



# ASTROPHYSICAL MOTIVATION

#### <sup>13</sup>C( $\alpha$ ,n)<sup>16</sup>O neutron source for s process

- <sup>13</sup>C(α,n)<sup>16</sup>O (Q=2.215 MeV) is the main neutron source feeding s-process in low (1-3 M<sub>☉</sub>) mass TP-AGB stars, responsible for nucleosynthesis of half of nuclides heavier than iron
  Average temperature 10<sup>8</sup> K → Gamew window 140 250 keV
- Average temperature  $10^8 \text{ K} \rightarrow \text{Gamow}$  window **140-250 keV**



### FOR THE REACTION RATE WE NEED CROSS SECTION

$$\langle \sigma v \rangle_{ab} = \sqrt{\frac{8}{\pi\mu}} \left(\frac{1}{k_B T}\right)^{3/2} \int_0^{+\infty} E\sigma(E) e^{xp} \left(-\frac{E}{k_B T}\right) dE$$

### FOR THE CROSS SECTION WE NEED EXPERIMENTAL YIELD

$$\frac{\boldsymbol{n_{det}}}{Q} = Y(E_{\alpha}) = \int_{E_{\alpha}-\Delta E}^{E_{\alpha}} \frac{\boldsymbol{\eta}(\boldsymbol{E})\sigma(E)}{\boldsymbol{\varepsilon}(\boldsymbol{E})} dE$$

#### LUNA MAIN GOAL

5000 × 10<sup>3</sup>

4500

4000

3500

3000 🎒

2500

2000

S(E)-factor [MeV barn]

A direct meauserement of the  ${}^{13}C(\alpha,n){}^{16}O$  approaching the Gamow window with a 20% uncertainty.

#### **INDIRECT MEASUREMENTS**

- Trippella et al.(2017) (red band) and La Cognata (green band) et al. (2013) with the THM, the R matrix is higher then Heil one at 100 keV.
- ANC: Avila et al (2015) (violet band)
- Cyan band is NACRE II compilation



700



 $\sigma(E) = \frac{1}{E}S(E)e^{-2\pi\eta}$ 

### STATE OF THE ART

Kellogg (1989)

Drotleff (1993)

Heil R Matrix

Harrissopulos (2005) Heil (2008)

Gamow Peak 90MK Trippella (2017)

Trippella 2017 central value



19/10/22

# **GIANTS:** a complementary contribution



- Trojan Horse Method via <sup>13</sup>C(<sup>6</sup>Li, n<sup>16</sup>O)<sup>2</sup>H "quasi-free" kinematic regime (E<sub>b</sub>= 7.82 MeV)
- Advantages: not depentend to coulombian barrier repulsion and to electron screening effect
- **Drawback**: normalization to direct measuement



- Inverse reaction measurement: <sup>16</sup>O(n,α)<sup>13</sup>C + principio dettagliato
- Advantages : neutron beam avoids coulombian barrier effect
- **Drawback:** emitted  $\alpha$  with energy of hundreds keV



Double Frisch Grid Ionisation Chambers (DFGIC) build at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

### LUNA EXPERIMENTAL SETUP

- Electrostatic accelerator up to 400 kV installed in Laboratori Nazionali del Gran Sasso, Italy
- Background reduction by:
  6 orders of magnitude for muons
  3 orders of magnitude for neutrons
- <I>= 200  $\mu$ A p or  $\alpha$  beam impinging on solid or gas target
- First neutron detector developed by LUNA:
  - 12 <sup>3</sup>He steel counters 40 cm long .
  - 6 <sup>3</sup>He steel counters 25 cm long.
  - 120% HPGe.





## **BACKGROUND REDUCTION**

**ENVIRONMENTAL**: neutron flux reduction of a factor 1000 in Underground Laboratory

**INTRINSIC:**  $\alpha$  particles source of intrinsic background from U and Th impurities in the counters' case

**10 atm** pressurised <sup>3</sup>He counters with a stainless steel case with low intrinsic background Background (n+ $\alpha$ ): (2.93+-0.09) counts/h in the ROI







### **NEUTRON DETECTION EFFICIENCY**

#### <sup>13</sup>C( $\alpha$ ,n)<sup>16</sup>O $\rightarrow$ E<sub>n</sub>=2.2-2.6 MeV emission

**Geant4** simulations validated by experimental measurements 60 60 Efficiency  $(\eta_n)[\%]$ <sup>51</sup>V(p,n)<sup>51</sup>Cr Total 50 Outer ring 50 5 MV Van dee Graaff at Atomki, Hungary Inner ring <sup>51</sup>Cr decay via electron capture 40 ( $T_{1/2}$ =27.7 days and emission of E $\gamma$ =320 keV) • E<sub>p,lab</sub>=1.7, 2.0, 2.3 MeV 30 30 (E<sub>n</sub>=0.13, 0.42, 0.71 MeV) 20 20 **Calibrated AmBe source** 10 10 •E<sub>n</sub>=0-12 MeV; weighted E<sub>n</sub>~ 4.0 MeV 2.5 3.5 4.5 0.0 .5 2.0 3.0 4.0 5.0 1.5 E<sub>n</sub> [MeV] Efficiency interpolated (red diamond) in the L. Csedreki et al. NIM A 994 (2021) ROI:  $(38 \pm 3)\%$ 

### TARGET CHARACTERIZATION by <sup>13</sup>C(p,γ)<sup>14</sup>N 1<sup>st</sup> phase at MTA Atomki

- 99% enriched <sup>13</sup>C powder evaporated on Tantalum backing using the electron gun technique
- Thickness measured at 2 MV Tandetron (<I> 500 nA) using the scan of the resonance  $E_{lab} = 1747.6 \text{ keV} (\Gamma_R = 122 \text{ eV})$
- Evaporation uniformity tested



9



### 2<sup>nd</sup> phase: <sup>13</sup>C(p,γ)<sup>14</sup>N GAMMA SHAPE ANALYSIS at LUNA

Gamma Shape Analysis performed periodically at Ep=310 keV, alternating proton and alpha irradiation on target



Yield reduction in peak as a function of accumulated charge assumed as consequence of modification of target stoichiometry

## S(E) factor towards the Gamow window



- Data taking in 4 campaigns of 3 months each in about 2 years (more than 100 targets used)
- Statistical uncertainty lower than 10% for the whole dataset (E<sub>cm</sub> 230-305 keV)
- Lowest energy data ever achieved and at the Gamow window edge of low mass AGB.
- Gao et al. (published on PRL) confirm LUNA data towards Gamow peak

19/10/22

### FROM S(E)-FACTOR TO REACTION RATE



## VARIATION OF <sup>60</sup>Fe

The <sup>60</sup>Fe is produced when the neutron density is high enough to allow neutron captures at the <sup>59</sup>Fe branching point (half-life 44.5d). Therefore, its final abundance is enhanced in case of the activation of the second (convective) neutron burst.

Main radiative neutron event : low flux, high exposure ( 80-100 MK)

Second convective neutron burst: high flux, low exposure (200 MK)

| Į | 60Ni        | 61Ni        | 62Ni        | 63Ni        | 64Ni        |
|---|-------------|-------------|-------------|-------------|-------------|
|   | STABLE      | STABLE      | STABLE      | 101.2 Υ     | STABLE      |
|   | 26.223%     | 1.1399%     | 3.6346%     | β-: 100.00% | 0.9255%     |
| 9 | 59Co        | 60Co        | 61Co        | 62Co        | 63Co        |
|   | STABLE      | 1925.28 D   | 1.649 H     | 1.50 Μ      | 27.4 S      |
|   | 100%        | β-: 100.00% | β-: 100.00% | β-: 100.00% | β-: 100.00% |
|   | 58Fe        | 59Fe        | 60Fe        | 61Fe        | 62Fe        |
|   | STABLE      | 14.495 D    | 2.62E+6 Ү   | 5.98 Μ      | 68 S        |
|   | 0.282%      | 0-: 100.00% | β- 100.00%  | β-: 100.00% | β-: 100.00% |
|   | 57Mn        | 58Mn        | 59Mn        | 60Mn        | 61Mn        |
|   | 85.4 S      | 3.0 S       | 4.59 S      | 0.28 S      | 709 MS      |
|   | β-: 100.00% |
|   | 56Cr        | 57Cr        | 58Cr        | 59Cr        | 60Cr        |
|   | 5.94 Μ      | 21.1 S      | 7.0 S       | 1.05 S      | 492 MS      |
|   | β-: 100.00% |

### **CONCLUSIONS AND OUTLOOK**

- Direct measurement performed at unprecedented low energy approaching the Gamow window and with overall uncertainty at each point <20%</li>
- The new LUNA dataset allows to evaluate a more constrained  $^{13}C(\alpha,n)^{16}O$  reaction rate at T  $\sim$  90 MK
- We find that the new low-energy crosssection measurements imply sizeable variations of the <sup>60</sup>Fe, <sup>152</sup>Gd and <sup>205</sup>Pb yields



With the installation (2021-2022) of the LUNA facility at LNGS MV (TV max=3.5 MV) a new measurement of the  $^{13}C(\alpha,n)^{16}O$  at higher energies will allow to have a unique dataset in a wide energy range



### THE LUNA COLLABORATION

A. Compagnucci\*, M. Junker | Laboratori Nazionali del Gran Sasso, INFN, ASSERGI, Italy/\*GSSI, L'AQUILA, Italy

F. Barile, G.F. Ciani, D. Di Bari, V. Paticchio, L. Schiavulli | Università degli Studi di Bari and INFN, BARI, Italy

M. Lugaro | Konkoly Observatory, Hungarian Academy of Sciences, BUDAPEST, Hungary

L. Csedreki, Z. Elekes, Zs. Fülöp, Gy. Gyürky, T. Szücs |Institute of Nuclear Research (ATOMKI), DEBRECEN, Hungary

D. Bemmerer, A. Boeltzig, E. Masha | Helmholtz-Zentrum Dresden-Rossendorf, DRESDEN, Germany

M. Aliotta, C.G. Bruno, T. Chillery, T. Davinson, SIDHU Ragandeep Singh | University of Edinburgh, EDINBURGH, UK

P. Corvisiero, P. Prati, S. Zavatarelli | Università degli Studi di Genova and INFN, GENOVA, Italy

#### R. Perrino | INFN Lecce, LECCE, Italy

R. Depalo, F. Ferraro, A. Guglielmetti |Università degli Studi di Milano and INFN, MILANO, Italy

A. Chamseddine, A. Best, A. Di Leva, G. Imbriani, D. Rapagnani |Università degli Studi di Napoli and INFN, NAPOLI, Italy C. Broggini, A. Caciolli, P. Marigo, R. Menegazzo, D. Piatti, J. Skowronski |Università degli Studi di Padova and INFN, PADOVA, Italy

V. Rigato, M. Campostrini | Laboratori Nazionali di Legnaro, Italy

A. Formicola , C. Gustavino | INFN Roma, ROMA, Italy

O. Straniero | Osservatorio Astronomico di Collurania, TERAMO and INFN LNGS, Italy

F. Cavanna, P. Colombetti, G. Gervino | Università di Torino and INFN, TORINO, Italy

