David Rapagnani on behalf of the 12C12C LUNA WG

¹²C+¹²C with LUNAMV

GIANTS XI - 20-21 Ottobre Caserta

D. Rapagnani (Unina)

Introduction

- influences the evolution of massive stars and low mass stars in close binary systems (e.g. Type Ia supernova)
- $T_9 > 0.5$, where $E_{cm} \sim 1.5$ MeV
- exit channels ${}^{23}Na+p (Q = 2.24 \text{ MeV}) - \text{open}$ ${}^{20}Ne+\alpha (Q = 4.62 \text{ MeV}) - \text{open}$ ${}^{23}Mg+n (Q = -2.62 \text{ MeV}) - \text{closed at lower energies, weak at the higher}$ ${}^{24}Mg+\gamma (Q = 13.9 \text{ MeV}) - \text{weak}$
- very low reaction cross section (<< nb) makes BIB and natural background prevent direct measurements at low energies

ERNA results presented by Liz "Direct measurements of the 12C+12C reactions cross-sections towards astrophysical energies (ERNA)"

Status of the art

- different interpretations of indirect experimental data makes S-Factor estimate at stellar energy unreliable
- low energy direct measurements could resolve present ambiguity

γ channel

¹²C+¹²C \rightarrow ²⁰Ne + α

γ-rays and α particles energies for excited states for ${}^{12}C({}^{12}C, \alpha){}^{20}Ne$ (Q = 4.617 MeV)

E _x (MeV)	٩ ſ	Main γ transitions (MeV)		ID	E _{α-max} (MeV) (E _{CM} = 2 MeV)
0.0	0+			α_0	8.6
1.63	2+	1.63 →0 1.63		α_1	6.8
4.24	4+	4.24 → 1.63 2.61		α_2	3.9
4.96	2-	4.96 → 1.63 3.33		α3	3.1
5.62	3⁻	5.62 → 1.63 3.98		α_4	2.2
5.78	1-	<i>5.78 → 1.63</i> 4.15	5.78 → 0 5.78	α_5	2.0

γ -background

Expected counting rate

- 150 eµA of ¹²C⁺ with LUNA MV (commissioning almost complete)
- 150% HPGe
- reactions/day following Tumino (left), Mukhamedzhanov (right) and non-Resonant (center) predicted cross sections
- sensitivity for different shielding setups in LUNAMV

u/g + 15 cm Pb u/g + 25 cm Pb u/g + 25 cm Pb $+ N_2$ flush

LUNA MV

- 3.5 MV Singletron Accelerator with ECR source
- 150 μA of high energy resolution ¹²C beams
- high stability for long measurement runs

γ measurement

under testing in LNGS

particles detection with GASTLY

x10⁻³

- GASTLY under characterization underground at LUNA 400 site
- best particles and noise separation with different gas (Ar CF4) and pressures under test
- intrinsic background from vetronite identified; employment of alternative material are under study

particles detection with nTD Si detectors

- Array of neutron Transmutation Doped (nTD) Si detectors
- Pulse shape to discriminate particles (and background!)
- No gas. No degradation of energy resolution.
- We bought **8x** MSL MSPAD 1x5 (already delivered)
- Currently designing new carrier and shorter Kapton cable
- Will also be tested and used for $^{23}Na(p,\alpha)$ at LUNA-400

¹²C target characterization

THE HEAT EXPERIMENT @ LNL (Hydrogen dEsorption from cArbon Targets)

- Reduce hydrogen contamination through **controlled heating** up to 1200°C
- H contamination level before/after desorption through Ion Beam Analysis:
 - \circ Nuclear Reaction Analysis (NRA) exploiting ²H(³He,p)⁴He reaction
 - $_{\odot}$ Elastic Recoil Detection Analysis (ERDA) with ^{4}He beam

Thank you for your attention!!!

¹²C+¹²C with LUNAMV

GIANTS XI - 20-21 Ottobre Caserta

D. Rapagnani (Unina)