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Why Solid Targets?

Thin, self-supporting metallic disk with the target material
itself either deposited on the backing or implanted into it

Advantages
Compact experimental setup

Detector in closer distance

Almost point-like source

Convenient target exchange

Disadvantages
Not for all elements

Target thickness

Stoichiometric ratio

Backing contaminants
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Previous Measurements at LUNA

Nuclear reactions of astrophysical interest with solid targets at LUNA October 20, 2022 4/16



Introduction

Experimental
Setup
17O(p, γ)18F
Resonance

Proton Capture
on Carbon

Conclusions

Laboratory for Underground Nuclear Astrophysics

Why?
the muon flux reduced by six
orders of magnitude
necessary for very low
cross-sections measurements

Where?
located at LNGS laboratories

in Abruzzo, Italy
∼ 1400 meters under Gran

Sasso mountain
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Solid Target Setup

HPGe
close geometry
excellent energy resolution
used at 0 deg and 55 deg

BGO
almost 4π geometry
segmented in 6 crystals
permits coincidences
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17O(p, γ)18F - Resonance at 65 keV

17O(p, γ)18F reaction takes
part of the CNO cycle

AGB nucleosynthesis footprint
is the oxygen isotopic ratio
in presolar grains

Models still struggle to match
the observations

The reaction rate in the
range of interest is dominated
by the resonance at 65 keV
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Measuring the 65 keV Resonance (1)

State of the Art
No measurements, estimated
ωγ = (1.6±0.3)×10−11 eV

Improving Sensitivity

1 new shielding: background
reduction by factor of 5

2 new Al holder and chamber:
20 % increase in efficiency
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Measuring the 65 keV Resonance (2)

Problem
Ta backing contains d and p + d reaction produces a single γ-ray
which lies in the same energy region of 17O(p, γ)18F

Solution
420 Coulombs on 17O targets for resonance study
300 Coulombs on natO targets for p + d background
gating the events on the number of γ-rays
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12C(p, γ)13N and 13C(p, γ)14N
Astrophysical Motivation

First two reactions of the CNO
cycle and neutrino emitter
The 12C/13C ratio readily derived
from the stellar spectra
Constrained reaction rate in a
wide energy range can help the
mixing models
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HPGe Campaign
Peak Shape Analysis

Full parametrization of
primary γ-peaks

Best-fit results for both
S-factor and target profile
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BGO Campaign
Total Absorption Spectroscopy and Activation Counting

13C(p, γ)14N (Q ∼ 8 MeV)
Sum spectrum for all crystals

High Q-value, no background

Target monitoring with
HPGe at 55 deg

12C(p, γ)13N (Q ∼ 2 MeV)
Irradiation and counting
cycles in-situ

Best-fit by iteratively solving
differential equation
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Results - 12C(p, γ)13N
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Results - 13C(p, γ)14N
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Only statistical uncertainty is plotted, systematic one is 7.1%
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(Bonus) Future

23Na(p, α)20Ne study requires charged-particle detection!

→ new setup under construction at Edinburgh!
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Conclusions

Solid targets offer several advantages (and few disadvantages)

Frequently employed at LUNA

Permit usage of different experimental techniques

Soon a new setup for charged-particle detection will be mounted

Thank you for attention!
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