

Nuclear reactions of astrophysical interest with solid targets at LUNA

Jakub Skowronski^{1,2} for the LUNA collaboration

¹Università degli Studi di Padova ²Istituto Nazionale di Fisica Nucleare, Sezione di Padova email: jakub.skowronski@pd.infn.it

GIANTS XI

October 20, 2022

Outline

Introduction

Experimental Setup

 17 O(p, γ) 18 F Resonance

Proton Capture on Carbon

Conclusions

1 Introduction

- 2 Experimental Setup
- 3 ${}^{17}\text{O}(p,\gamma){}^{18}\text{F}$ Resonance
- 4 Proton Capture on Carbon
- 5 Conclusions

Why Solid Targets?

Introduction

Experimental Setup

 17 O(p, γ) 18 F Resonance

Proton Capture on Carbon

Conclusions

Advantages

- Compact experimental setup
- Detector in closer distance
- Almost point-like source
- Convenient target exchange

Disadvantages

- Not for all elements
- Target thickness
- Stoichiometric ratio
- Backing contaminants

Nuclear reactions of astrophysical interest with solid targets at LUNA

October 20, 2022 3/16

Previous Measurements at LUNA

Introduction

Experimental Setup

 $^{17}O(p, \gamma)^{18}F$ Resonance

Proton Capture on Carbon

Conclusions

Past	Reaction	Target	Туре
	$^{14}N(p,\gamma)^{15}O$	TiN	Reactive Sputtering
	$^{25}Mg(p,\gamma)^{26}AI$	MgO	Evaporation
	$^{15}N(p,\gamma)^{16}O$	TiN	Reactive Sputtering
	$^{18}{ m O}(ho,\gamma)^{19}{ m F}$	Ta_2O_5	Anodic Oxidation
	${}^{6}Li(p,\gamma){}^{7}Be$	Li	Evaporation
	$^{13}C(\alpha, n)^{16}O$	С	Evaporation
e Present	$^{12}C(p,\gamma)^{13}N$	С	Evaporation
	$^{13}C(p,\gamma)^{14}N$	С	Evaporation
	$^{17}O(p,\gamma)^{18}$ F	Ta_2O_5	Anodic Oxidation
	$^{16}\mathrm{O}(p,\gamma)^{17}\mathrm{F}$	Ta_2O_5	Anodic Oxidation
uture	$^{23}Na(p,lpha)^{20}Ne$	Na	Evaporation
ш			

Laboratory for Underground Nuclear Astrophysics

Introduction

Experimental Setup

 $^{17}O(p, \gamma)^{18}F$ Resonance

Proton Capture on Carbon

LUN

Conclusions

- the muon flux reduced by six orders of magnitude
- necessary for very low cross-sections measurements

Where?

- located at LNGS laboratories in Abruzzo, Italy
- $\blacksquare \sim 1400 \; meters$ under Gran Sasso mountain

Nuclear reactions of astrophysical interest with solid targets at LUNA Octob

October 20, 2022 5/16

Solid Target Setup

Introduction

Experimental Setup

 $^{17}O(p, \gamma)^{18}F$ Resonance

Proton Capture on Carbon

Conclusions

HPGe

- close geometry
- excellent energy resolution
- used at 0 deg and 55 deg

BGO

- almost 4π geometry
- segmented in 6 crystals
- permits coincidences

Nuclear reactions of astrophysical interest with solid targets at LUNA October 20, 2022 6/16

$^{17}\mathrm{O}(p,\gamma)^{18}\mathsf{F}$ - Resonance at 65 keV

Introduction

Experimental Setup

 17 O(p, γ) 18 F Resonance

Proton Capture on Carbon

Conclusions

- ¹⁷O(p, γ)¹⁸F reaction takes part of the CNO cycle
- AGB nucleosynthesis footprint is the oxygen isotopic ratio in presolar grains
- Models still struggle to match the observations
- The **reaction rate** in the range of interest is **dominated** by the **resonance at 65 keV**

[Boeltzig et al , EPJ A (2016)]

Nuclear reactions of astrophysical interest with solid targets at LUNA

October 20, 2022 7/16

Measuring the 65 keV Resonance (1)

Introduction

Experimental Setup

 17 O(p, γ) 18 F Resonance

Proton Capture on Carbon

Conclusions

State of the Art

No measurements, estimated $\omega\gamma = (1.6\pm0.3) \times 10^{-11} \text{ eV}$

Improving Sensitivity

- **1 new shielding**: background reduction by **factor of 5**
- 2 new AI holder and chamber:20 % increase in efficiency

Nuclear reactions of astrophysical interest with solid targets at LUNA

October 20, 2022 8/16

Measuring the 65 keV Resonance (2)

Introduction

Experimental Setup

 17 O(p, γ) 18 F Resonance

Proton Capture on Carbon

Conclusions

Problem

Ta backing contains d and p + d reaction produces a single γ -ray which lies in the same energy region of ${}^{17}\text{O}(p,\gamma){}^{18}\text{F}$

Solution

- 420 Coulombs on ¹⁷O targets for resonance study
- 300 Coulombs on ^{nat}O targets for p + d background
- gating the events on the number of γ -rays

Nuclear reactions of astrophysical interest with solid targets at LUNA October

October 20, 2022 9/16

$^{12}{ m C}(p,\gamma)^{13}{ m N}$ and $^{13}{ m C}(p,\gamma)^{14}{ m N}$ Astrophysical Motivation

Introduction

Experimental Setup

 17 O(p, γ) 18 F Resonance

Proton Capture on Carbon

Conclusions

- First two reactions of the CNO cycle and neutrino emitter
- The ¹²C/¹³C ratio readily derived from the stellar spectra
- Constrained reaction rate in a wide energy range can help the mixing models

Nuclear reactions of astrophysical interest with solid targets at LUNA

October 20, 2022 10/16

HPGe Campaign

Peak Shape Analysis

Introduction

Experimental Setup

 17 O(p, γ) 18 F Resonance

Proton Capture on Carbon

γ-Ray Yield

 $\sigma(E)$

 $E_0 - \Delta E$

Conclusions

- Full parametrization of primary γ-peaks
- Best-fit results for both
 S-factor and target profile

 $+10^{\circ}$

Data
 Fit
 Profile

2.5

Counts

0.5

2230

2240

 E_{γ} (keV)

È.

 \dot{E}_n

 E_0

Beam

nat3 (ΔE ≈8.0 keV)

Nuclear reactions of astrophysical interest with solid targets at LUNA Octo

October 20, 2022 11/16

BGO Campaign

Total Absorption Spectroscopy and Activation Counting

Introduction

Experimental Setup

 17 O(p, γ) 18 F Resonance

Proton Capture on Carbon

Conclusions

13
C $(p,\gamma)^{14}$ N $(Q\sim$ 8 MeV)

- Sum spectrum for all crystals
- High Q-value, no background
- Target monitoring with HPGe at 55 deg

 $^{12}{
m C}(p,\gamma)^{13}{
m N}$ ($Q\sim 2~{
m MeV}$)

- Irradiation and counting cycles in-situ
- Best-fit by iteratively solving differential equation

Nuclear reactions of astrophysical interest with solid targets at LUNA Octo

October 20, 2022 12/16

Results - ${}^{12}C(p, \gamma){}^{13}N$

LUN

Only statistical uncertainty is plotted, systematic one is 6.8%

Nuclear reactions of astrophysical interest with solid targets at LUNA October 20, 2022 13/16

Results - ${}^{13}C(p, \gamma){}^{14}N$

LUN

Only statistical uncertainty is plotted, systematic one is 7.1%

Nuclear reactions of astrophysical interest with solid targets at LUNA October 20, 2022 14/16

(Bonus) Future

Introduction

Experimental Setup

 17 O(p, γ) 18 F Resonance

Proton Capture on Carbon

Conclusions

 23 Na(p, α) 20 Ne study requires charged-particle detection!

 \rightarrow new setup under construction at Edinburgh!

Nuclear reactions of astrophysical interest with solid targets at LUNA October 20, 2022 15/16

Conclusions

Introduction

Experimental Setup

 17 O(p, γ) 18 F Resonance

Proton Capture on Carbon

Conclusions

- Frequently employed at LUNA
- Permit usage of different experimental techniques
- Soon a new setup for charged-particle detection will be mounted

Thank you for attention!

Nuclear reactions of astrophysical interest with solid targets at LUNA October 20, 2022 16/16