BBN Status and perspectives

Ofelia Pisanti

Università di Napoli Federico II and INFN Napoli

Theoretical Astroparticle Group - Department of Physics E. Pancini

GIANTS XI - 20-21 October 2022

Summary

- BBN in brief
- The quest for precision: theory vs data
- S-factor analysis and results
- Cosmological analysis
- Non standard scenarios
- Conclusions

BBN in brief

- 1. Less than 1 second after the bang, the plasma of γe^{-} , v, n, p (and their antiparticles) is in equilibrium.
- 2. At T~1 MeV (1 second) neutrinos decouple because their weak interactions go out of equilibrium with respect to expansion.
- n/p ratio (fortunately) freezes out just soon after neutrinos, at T_D~800 keV; then, when a sufficient abundance of deuterium forms at T_{BBN}~100 keV, the nuclear chain starts: (almost) all neutrons present at this moment go into ⁴He.

The final result is a universe made by 75% of hydrogen, 25% of ⁴He (and negligible yields of the other elements up to ⁷Li).

cosmological model weak rates nuclear rates...

In the standard minimal model the only free parameter is the baryon to photon number density:

$$\eta_b = \frac{n_b}{n_{\nu}} = 273.45 \cdot 10^{-10} \Omega_b h^2$$

PArthENoPE3.0

Nuclide abundances

R.V. Wagoner, Astrophys. J. Suppl. 18 (1969) 247 R.V. Wagoner, Astrophys. J. 179 (1973) 343

L.H. Kawano, 1988. Preprint FERMILAB-Pub-88=34-A L.H. Kawano, 1992. Preprint FERMILAB-Pub-92=04-A

R.E. Lopez, M.S. Turner, Phys. Rev. D 59 (1999) 103502

E. Lisi, S. Sarkar, F.L. Villante, Phys. Rev. D 59 (1999) 123520

K.A. Olive, G. Steigman, T.P. Walker, Phys. Rep. 333334 (2000) 389

S. Esposito, G. Mangano, G. Miele, O. Pisanti, JHEP 0009 (2000) 038 P.D. Serpico, et al., JCAP 0412 (2004) 010

PArthENoPE: O. Pisanti et al., Comp. Phys. Comm. 178 (2008) 956; Comp. Phys. Comm. 233 (2018) 237

AlterBBN: A. Arbey, Comp. Phys. Comm. 183 (2012) 1822

PRIMAT: C. Pitrou, A. Coc, J.-P. Uzan, E. Vangioni, Phys. Rep. 754 (2018) 1

Ofelia Pisanti - GIANTS XI - Caserta

code

S. Gariazzo, P.F. de Salas, O. Pisanti, R. Consiglio, Comput.Phys.Commun. (2022) 108205, 271

The quest for precision: theory vs data

Accuracy of primordial elements abundances measurement. Indirect observations, since stars have changed the chemical composition of the universe. Strategies are observation in "primordial" systems or careful account for chemical evolution: increasingly precise astrophysical data on D (1%), He measured by different groups with less than 1.5% accuracy but one determination is at 4% distance, the situation is not clear for Li (the value is a factor 2-3 below the BBN prediction, lithium depletion problem).

systematics and astrophysical evolution

Accuracy of the BBN codes. Standard physics, theoretical framework well established, but outputs of the nuclear network depend on the determination of several critical reactions. In the past mainly experimental measures (not always in the relevant energy range for BBN, 10÷400 keV in the center of mass), now also theoretical calculations.

nuclear reaction data and analysis methods

Astrophysical data

- ²H: it is only destroyed. Observation of Lyman absorption lines by neutral H and D (HI, DI) gas clouds (Damped Lyman-α, DLAs) at red-shift z ≈ 2 3 placed along the line of sight of distant quasar. Few systems, but next generation 30-m class telescopes will increase the number.
- ³He: in stellar interior can be either produced by ²H-burning or destroyed in the hotter regions. It was observed only within Milky Way and magnitude and sign of the correction for the contamination by ejecta from earlier generation of stars are uncertain. Next generation 30-m class telescopes may measure ³He/⁴He.
- ⁴He: it is produced inside stars. Observation in ionized gas regions (HeII → HeI recombination lines) in low metallicity environments (BCG or dwarf irregular), with O abundances 0.02 0.2 times those in the sun. Then, regression to zero metallicity. Large systematics (1% accuracy at best), but CMB allows interesting measure via ⁴He effect on acoustic peak tail.
- ⁷Li: it is produced (BBN and spallation) and destroyed. Observation of absorption lines in spectra of halo stars of POP II. Spite plateau at medium metallicity, but scattered points at low metallicity. The experimental value is a factor 2-3 below the BBN prediction. Attempts at solutions: nuclear rates, stellar depletion, new particles decaying at BBN, axion cooling, variation of fundamental constants. However, a measure from the Small Magellanic Cloud is at BBN level.

) 073

11

Outstanding results from LUNA

Di	Di Valentino et al., Phys. Rev. D90 (2014) no. 2, 0235				
	Reaction	Rate symbol	$\sigma_{^{2}\text{H/H}} \times 10^{5}$		
NA	$\frac{p(n,\gamma)^{2}H}{d(p,\gamma)^{3}He}$ $\frac{d(d,n)^{3}He}{d(d,p)^{3}H}$	$egin{array}{c} R_1 \ R_2 \ R_3 \ R_4 \end{array}$	± 0.002 ± 0.062 ± 0.020 ± 0.013	0.1% 87% 9% 3.8%	

Deuterium synthesis

Symbol	Reaction	Symbol	Reaction
R_0	τ_n	R_8	${}^{3}\mathrm{He}(\alpha,\gamma){}^{7}\mathrm{Be}$
R_1	$p(n,\gamma)d$	R_9	${}^{3}\mathrm{H}(\alpha,\gamma){}^{7}\mathrm{Li}$
R_2	$^{2}\mathrm{H}(p,\gamma)^{3}\mathrm{He}$	R_{10}	$^7\mathrm{Be}(n,p)^7\mathrm{Li}$
R_3	$^{2}\mathrm{H}(d,n)^{3}\mathrm{He}$	R_{11}	$^{7}\mathrm{Li}(p,\alpha)^{4}\mathrm{He}$
R_4	$^{2}\mathrm{H}(d,p)^{3}\mathrm{H}$	R_{12}	${\rm ^4He}(d,\gamma){\rm ^6Li}$
R_5	${}^{3}\mathrm{He}(n,p){}^{3}\mathrm{H}$	R ₁₃	${}^{6}\mathrm{Li}(p,\alpha){}^{3}\mathrm{He}$
R_6	$^{3}\mathrm{H}(d,n)^{4}\mathrm{He}$	R ₁₄	$^7\mathrm{Be}(n,\alpha)^4\mathrm{He}$
R_7	$^{3}\mathrm{He}(d,p)^{4}\mathrm{He}$	R_{15}	$^7\mathrm{Be}(d,p)2{}^4\mathrm{He}$

- previous data were scarce in the BBN range with ~ 9% uncertainty
- phenomenological fit by Adelberger et al. (AD2011, orange line and band)
- ab initio theoretical prediction by Marcucci et al. (2005) updated in 2016 (green line), 15% higher than AD2011
- Bayesian analysis by Iliadis et al. (2016, red line)

after LUNA

before LU

Mossa et al., Nature 587 (2020) 7833, 210

- very precise data (yellow points), Δ S/S \leq 2.6%, in [30,300] keV E_{cm}
- S-factor global fit (dominated by LUNA data) with 3^{rd} order polynomial, $\chi_{red}^2 = 1.02$ (blue line and band)

- Choose the scenario, that is the parameters of your model: A, B,
- Run your favourite BBN code and determine the theoretical abundances $X_i(A,B,...)$ with corresponding uncertainties $\sigma_i(A,B,...)$.
- Construct likelihood functions for your abundances and determine CL contours corresponding to given experimental measures:

$$L_{i}(N_{eff},\eta) = \frac{1}{2\pi\sigma_{i}^{th}(N_{eff},\eta)\sigma_{i}^{ex}} \int dx \exp\left(-\frac{(x-Y_{i}^{th}(N_{eff},\eta))^{2}}{2\sigma_{i}^{th}(N_{eff},\eta)^{2}}\right) \exp\left(-\frac{(x-Y_{i}^{ex})^{2}}{2\sigma_{i}^{2x}}\right)$$

For N

an

- Choose the scenario, that is the parameters of your model: A, B,
- Run your favourite BBN code and determine the theoretical abundances $X_i(A,B,...)$ with corresponding uncertainties $\sigma_i(A,B,...)$.
- Construct likelihood functions for your abundances and determine CL contours corresponding to given experimental measures:

$$L_{i}(N_{eff},\eta) = \frac{1}{2\pi\sigma_{i}^{th}(N_{eff},\eta)\sigma_{i}^{ex}} \int dx \exp\left(-\frac{(x-Y_{i}^{th}(N_{eff},\eta))^{2}}{2\sigma_{i}^{th}(N_{eff},\eta)^{2}}\right) \exp\left(-\frac{(x-Y_{i}^{ex})^{2}}{2\sigma_{i}^{2x}}\right)$$

$$N_{eff}=3.045, {}^{2}\text{H alone is}$$
efficient baryometer

- Choose the scenario, that is the parameters of your model: A, B,
- Run your favourite BBN code and determine the theoretical abundances $X_i(A,B,...)$ with corresponding uncertainties $\sigma_i(A,B,...)$.
- Construct likelihood functions for your abundances and determine CL contours corresponding to given experimental measures:

- Choose the scenario, that is the parameters of your model: A, B,
- Run your favourite BBN code and determine the theoretical abundances $X_i(A,B,...)$ with corresponding uncertainties $\sigma_i(A,B,...)$.
- Construct likelihood functions for your abundances and determine CL contours corresponding to given experimental measures:

- A(blue) and B(black) in fair agreement with each other and with Planck (1 σ green bands)
- C(solid) shows 1.84σ tension with Planck
- Likelihoods come from:
- ✓ A: only D_{BBN}, D/H=2.527±0.030
- ✓ B: D_{BBN}+ Y_{pBBN}+CMB, D/H=2.55±0.03, Y_p=0.2453+-0.0034
- \checkmark C: D_{BBN}+ Y_{pBBN}, D/H=2.527±0.030, Y_p=0.2453+-0.0034
- Planck green bands correspond to:
- ✓ A: Planck + $Y_p(\omega_b)$ + lensing + BAO
- ✓ B: Planck + lensing
- \checkmark C: Planck +Y_p($\omega_{\rm b}$) + lensing + BAO

- A(blue) and B(black) in fair agreement with each other and with Planck (1 σ green bands)
- C(solid) shows 1.84σ tension with Planck
- Likelihoods come from:
- ✓ A: only D_{BBN}, D/H=2.527±0.030
- ✓ B: D_{BBN}+ Y_{pBBN}+CMB, D/H=2.55±0.03, Y_p=0.2453+-0.0034
- \checkmark C: D_{BBN}+ Y_{pBBN}, D/H=2.527±0.030, Y_p=0.2453+-0.0034
- Planck green bands correspond to:
- ✓ A: Planck + $Y_p(\omega_b)$ + lensing + BAO
- ✓ B: Planck + lensing
- \checkmark C: Planck +Y_p($\omega_{\rm b}$) + lensing + BAO

SCM in good shape!

- A(blue) and B(black) in fair agreement with each other and with Planck (1 σ green b
- C(solid) shows 1.84σ tension with Planck
- Likelihoods come from:
- ✓ A: only D_{BBN}, D/H=2.527±0.030
- ✓ B: D_{BBN}+ Y_{pBBN}+CMB, D/H=2.55±0.03, Y_p=0.2453+-0.0034
- $\checkmark \quad C: D_{BBN} + Y_{pBBN}, D/H = 2.527 \pm 0.030, Y_p = 0.2453 + -0.0034$
- Planck green bands correspond to:
- ✓ A: Planck + $Y_p(\omega_b)$ + lensing + BAO
- ✓ B: Planck + lensing
- \checkmark C: Planck +Y_p($\omega_{\rm b}$) + lensing + BAO

tension in SCM!

Ofelia Pisanti - GIANTS XI - Caserta

8/12

The next goal: D+D S-factor measure

Different analyses agree on the fact that the origin of the discrepancy is in the different determinations of the D+D reaction rates. Exercise: which improvement can we foresee by assuming the same precision of LUNA in the D+D rate determination?

	$\Delta\Omega_B h^2$
LUNA 2020	0.00043
D+D forecast	0.00026
Planck+BAO	0.00014

Not standard scenarios

BBN is a powerful «cosmological probe» and can test more exotic scenarios for either the cosmological model or fundamental interactions, in particular when combined with CMB data (Planck).

Few examples:

- Non standard neutrino distribution in phase space
- Neutrino chemical potentials, i.e. neutrino-antineutrino (helicity) asymmetry

Extra-dimensions	
Varying coupling constant	
Massive particles in the MeV range or heavier	
Low reheating at the Mev scale	
Decaying massive particles	
Sterile neutrinos, dark radiation	
Non standard lepton interactions	

BBN and CMB indirect probes of non-standard cosmological models. In particular, BBN is strongly sensitive to the expansion rate (Hubble parameter), and any departure from the standard scenario can show up in N_{eff}.

To break the degeneracy the ⁴He abundance is employed with two different Y_p astrophysical measures, resulting in compatibility or tension of BBN with the Planck measure of the baryon density (the grey band is the 2- σ marginalized region from the Planck analysis with free N_{eff}).

BBN and CMB indirect probes of non-standard cosmological models. In particular, BBN is strongly sensitive to the expansion rate (Hubble parameter), and any departure from the standard scenario can show up in N_{eff}.

To break the degeneracy the ⁴He abundance is employed with two different Y_p astrophysical measures, resulting in compatibility or tension of BBN with the Planck measure of the baryon density (the grey band is the 2- σ marginalized region from the Planck analysis with free N_{eff}).

BBN and CMB indirect probes of non-standard cosmological models. In particular, BBN is strongly sensitive to the expansion rate (Hubble parameter), and any departure from the standard scenario can show up in N_{eff}.

To break the degeneracy the ⁴He abundance is employed with two different Y_p astrophysical measures, resulting in compatibility or tension of BBN with the Planck measure of the baryon density (the grey band is the 2- σ marginalized region from the Planck analysis with free N_{eff}).

FIG. 2. 1 and 2σ C.L. regions for ξ_{ν_e} and $\Omega_b h^2$ from nucleosynthesis data, CMB data, and their combination for a cosmlogical scenario without dark radiation (*i.e.* assuming $N_{\rm eff} = N_{\rm eff}^{\rm SM} = 3.044$). The left panel compares the favored regions for two determinations of the helium abundance (EMPRESS survey and the PDG-21 recommended value) adopting the PArthENoPE nuclear rates, while the right panel compares the favored regions for two choices of the nuclear reaction rates (PArthENoPE or PRIMAT) adopting the EMPRESS measurement of the helium abundance.

XI - Caser

12/12

Conclusions

- BBN, alone or combined with other cosmological probes (CMB, LSS,...) can constrain exotic physics beyond the Standard Model
- Presently, up to some claims of a 2 sigma level tension, the standard picture is consistent
- New astrophysical precise data are expected in the next years or so, maybe urging theorist to further improve the precision of the BBN predictions
- Nuclear physics input fundamental, both for the central value and the uncertainties of the prediction of primordial abundances. Focus has now shifted to DD transfer reactions, whose rates are responsible for different claims on the "health" of the cosmological model

Extra slides

S-factor analysis

O.P. et al, JCAP 04 (2021) 020

Analyses differ for: data selection criteria and/or methods of analysis (R-matrix for resonances, empirical or nuclear theory inspired form for smooth S-factors, χ^2 , Bayesian, Monte Carlo, ...). Our approach:

- Data: E_{ik} , S_{ik} , σ_{ik} , ε_k (normalization uncertainty, if not given it is estimated as max[σ_{ik}/S_{ik}])
- Estimator: standard chi-squared plus a penalty factor:

$$\chi^2(a_l, \omega_k) = \sum_{i_k} \frac{(S_{th}(E_{i_k}, a_l) - \omega_k S_{i_k})^2}{\omega_k^2 \sigma_{i_k}^2} + \sum_k \frac{(\omega_k - 1)^2}{\epsilon_k^2}$$

- S_{th} : empirical \rightarrow polynomials (all data, even at high energy, for constraining the shape)
- Fit parameters: a_l , ω_k (the penalty factor disfavours ω_k -1 to be greater than the normalization, ε_k)
- Standard error propagation:

 $\delta R^2 =$

$$\Delta R^{2}(T) = \int_{0}^{\infty} \mathrm{d}E' \, K(E',T) \int_{0}^{\infty} \mathrm{d}E \, K(E,T) \, \sum_{i,j} \frac{\partial S_{\mathrm{th}}(E',a)}{\partial a_{i}} \Big|_{\widehat{a}} \frac{\partial S_{\mathrm{th}}(E,a)}{\partial a_{j}} \Big|_{\widehat{a}} \operatorname{cov}(a_{i},a_{j})$$

• Final uncertainty combining the inflated ΔR with an overall scale error η

$$\chi^2_{red}\Delta R^2 + \eta^2 \qquad \eta^2 = \frac{\sum_k \frac{(\omega_k - 1)^2}{\chi^2_{k,red}}}{\eta^2}$$

Sensitivities

We change the S-factor of δS at a given energy Ecm and observe the corresponding variation in the deuterium yield δ (D/H).

The sensitivity defined as (Fiorentini et al. 1998, Nollett and Burles 2000)

$$\sigma(E_{CM}) = \frac{\delta(D/H)/(D/H)}{\delta S(E_{CM})/S(E_{CM})}$$

For the three deuterium reactions the BBN relevant range is ~ 10-400 keV with a maximum at ~ 80 keV.

Deuterium

- 1. Determination of D/H at high redshift help ensure that the observed abundance is close to primordial one.
- From a set of five high quality absorbers it was determined ²H/H=(2.53±0.04)·10⁻⁵ (R. Cooke et al., *Astrophys.J.* 781 (2014) 31.
- 3. A measure ²H/H=(2.45±0.28)·10⁻⁵ at z=3.256 remains debated (S. Reimer-Sorensen et al., *MNRAS* 447 (2015) 2925).
- After recent new observations or reanalyses of existing data the new value, with 1.2% uncertainty, is ²H/H=(2.527±0.030)·10⁻⁵ (R. Cooke et al., *Astrophys.J.* 855 (2018) 102).
- 5. The weighted mean of the latest 11 measures gives ${}^{2}H/H=(2.55\pm0.03)\cdot10^{-5}$ (B.D. Fields et al., *JCAP* 03 (2020) 010).
- 6. Very promising improvement foreseen in the measure by 30 m class telescopes.

Helium

- 1. The theoretical model used for extracting the abundance contains several physical parameters (among which ⁴He abundance, electron density, optical depth, temperature, neutral H fraction). However, there was a degeneracy between the electron density and the temperature of the gas.
- 2. More recently, the near-infrared (NIR) line Helλ10830 was included in the analysis, which is key to removing such a degeneracy.
- 3. From the study of 54 galaxies (three of which are Extremely Metal Poor Galaxies, EMPGs, less than 10% of solar metallicity), it results Y_p=0.2436±0.0040 (T. Hsyu et al, *Astrophys.J.* 896 (2020) 77).
- An alternative method consists in studying intergalactic absorption lines in almost primordial clouds between us and a background quasar, from which Y_p=0.250±0.033 (C. Sykes et al, MNRAS 492 (2020) 2151). Same authors give Y_p=0.248±0.001 as a weighted average of all recent determinations.
- Adding to the sample 10 EMPGs, a new results was released recently, Y_p=0.2379±0.0030 (A. Matsumoto et al, e-Print: 2203:09617).
- 6. Promising measurement from the damping tail of the CMB acoustic peak, for the moment not competitive with astrophysical measure.

Asplund et al, ApJ 644 (2006) 229

Lithium-6 problem

- 1. Lithium is the only element with three production channels: BBN, CR, and stars.
- First observations (1995-1997) of ⁷Li in low metallicity halo stars consistent with the existence of Spite plateau, justifying its association with the primordial ⁷Li abundance.
- High precision astrophysical data on D/H (1998), confirmed by CMB measurement of Ω_bh², predicted a ⁷Li/H abundance in excess of this plateau value, the primordial ⁷Li problem.
- 4. The lack of dispersion in the ⁷Li abundance data was initially the argument against a possible depletion of ⁷Li in stars with lower surface temperatures or higher metallicities. But first indications of a departure from the ⁷Li plateau (2010) and significant dispersion at low metallicity in more recent works (2018-2021) points to stellar depletion processes.
- Any depletion in ⁷Li should imply at least as much depletion in ⁶Li, but initial observations (1998) of ⁶Li in halo stars was entirely consistent with expected (⁶Li/⁷Li ~ 10⁻⁵).
- 6. Several years after (2006), measurements of ⁶Li in some very metal-poor dwarfs indicated an abundance about a thousand times that predicted (⁶Li/⁷Li ~ 10⁻²), the primordial ⁶Li problem.
- 7. The reality of a ⁶Li plateau could not be established because its detection is based on delicate fits to the line shape. Moreover, stars with sizable values of ⁶Li are close to the main-sequence turn-off in the HR diagram, i.e. the hottest stars of the sample.
- 8. A very recent (2022) measure of the isotopic ratio ⁶Li/⁷Li in three Spite plateau stars, using refined star models and numerical methods with data from ESPRESSO/Very Large Telescope spectrograph, reports no ⁶Li in any of the three stars → no primordial ⁶Li problem.

Wang et al, Mon.Not.Roy.Astron.Soc. 509 (2021) 1, 1521

