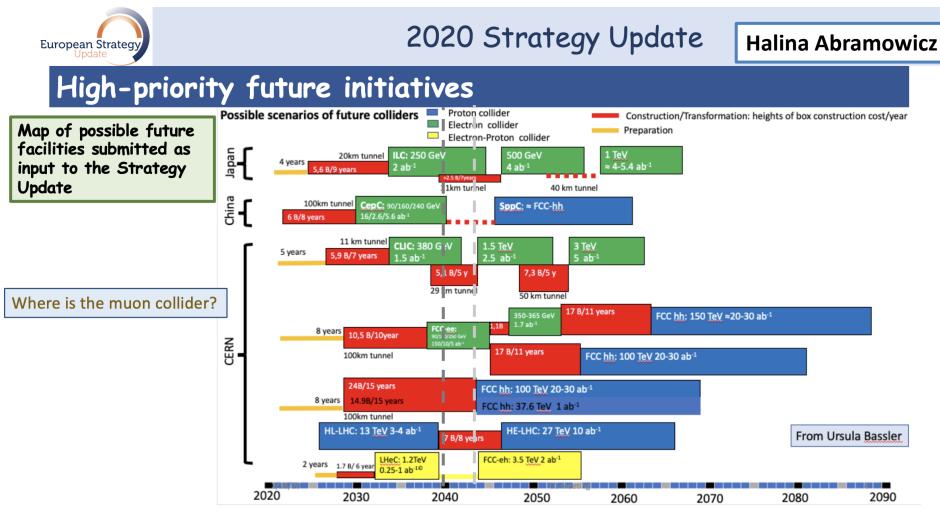


Napoli Seminar June 6, 2022

Muon Colliders a challenging opportunity

Nadia Pastrone (INFN



llaboration

Thanks to many colleagues in Italy, EU, USA

Input to EU Strategy of Particle Physics

Input Document to EU Strategy Update - Dec 2018:

"Muon Colliders," <u>arXiv:1901.06150</u> by CERN-WG on Muon Colliders

J.P. Delahaye et al.

High-energy Frontier Proposals

European Strategy Proces: finished 2020

Four main high-energy facilities proposed:

- two at CERN
- two in Asia

FCC (Future Circular Collider): FCC-hh

- pp collider @ 100 TeV
- ion option

FCC-ee

- Potential e⁺e⁻ first stage
 FCC-eh
- additional option

ILC

- 250 GeV electron-positron linear collider
- Japan might host
- limited in energy reach

CLIC

• 380 GeV, 1.5 TeV and 3 TeV electron positron collider

CEPC / SppC

- CEPC
- e⁺e⁻ collider 90-240 GeV SppC
- 75-150 TeV hadron collider later – same tunnel

2020 Update of the European Strategy for Particle Physics

19 June 2020 <u>10.17181/CERN.JSC6.W89E</u>

- Ensure Europe's continued scientific and technological leadership
- Strengthen the unique ecosystem of research centres in Europe

- An electron-positron Higgs factory is the highest-priority next collider.
 For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy.
 These compelling goals will require innovation and cutting-edge technology:
 - ramp up R&D on advanced accelerator technologies, in particular high-field superconducting magnets, including high-temperature superconductors
 - investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage

✓ the ILC in Japan would be compatible with this strategy

• The European particle physics community must **intensify accelerator R&D** and sustain it with adequate resources. **A roadmap should prioritise the technology**

Muon Collider Working Group

Jean Pierre Delahaye, CERN, Marcella Diemoz, INFN, Italy, Ken Long, Imperial College, UK, Bruno Mansoulie, IRFU, France, **Nadia Pastrone, INFN, Italy (chair)**, Lenny Rivkin, EPFL and PSI, Switzerland, Daniel Schulte, CERN, Alexander Skrinsky, BINP, Russia, Andrea Wulzer, EPFL and CERN

appointed by CERN Laboratory Directors Group in September 2017 to prepare the Input Document to the European Strategy Update "Muon Colliders," <u>arXiv:1901.06150</u>

de facto was the seed for a renewed international effort till 2020 with the crucial contribution of many INFN colleagues

FINDINGS and RECCOMENDATIONS:

Set-up an international collaboration to promote muon colliders and organize the effort on the development of both accelerators and detectors and to define the road-map towards a CDR by the next Strategy update.... Carry out the R&D program toward the muon collider

Past experiences and new ideas discussed at the joint ARIES Workshop July 2-3, 2018 - Università di Padova - Orto Botanico https://indico.cern.ch/event/719240/overview

EU Strategy - Accelerator R&D Roadmap

European Strategy Update – June 19, 2020:

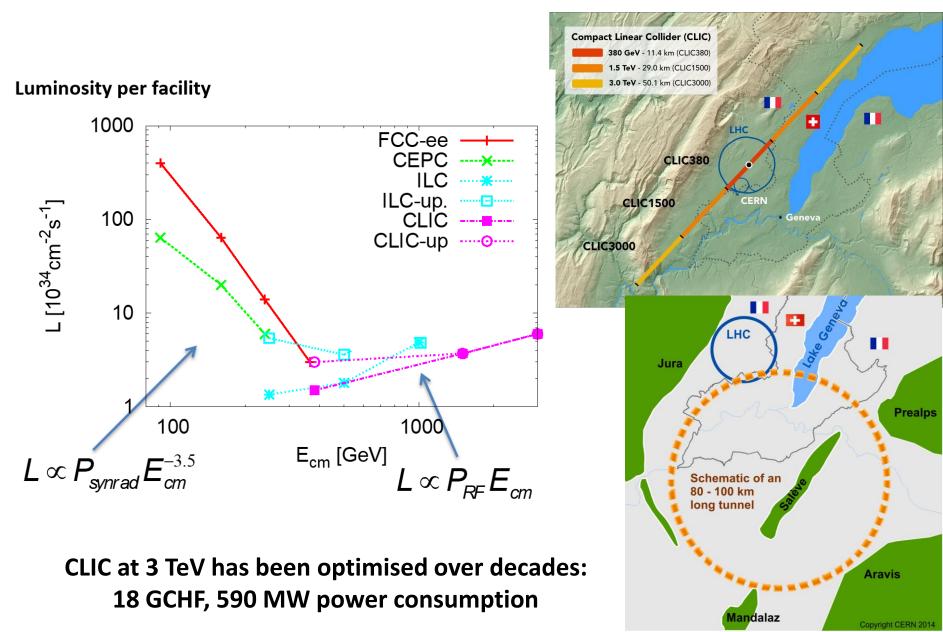
High-priority future initiatives [..]

High-priority future initiatives

In addition to the high field magnets the **accelerator R&D roadmap** could contain:

[..] an **international design study** for a **muon collider**, as it represents a unique opportunity to achieve a *multi-TeV energy domain* beyond the reach of e⁺e⁻colliders, and potentially within a more compact circular tunnel than for a hadron collider. The **biggest challenge** remains to produce an intense beam of cooled muons, but novel ideas are being explored.

CERN Laboratory Directors Group (LDG) established an Accelerator R&D roadmap to define a route towards implementation of the goals of the 2020 ESPPU bringing together the capabilities of CERN and the LNLs to carry out R&D and construction and operation of demonstrators


The compelling physics reach justifies establishment of an international collaboration to develop fully the muon collider design study and to pursue R&D priorities, according to an agreed upon work plan.

To facilitate implemention of the European Strategy LDG decided (July 2 2020) to: Agree to start building the collaboration for international muon collider design study

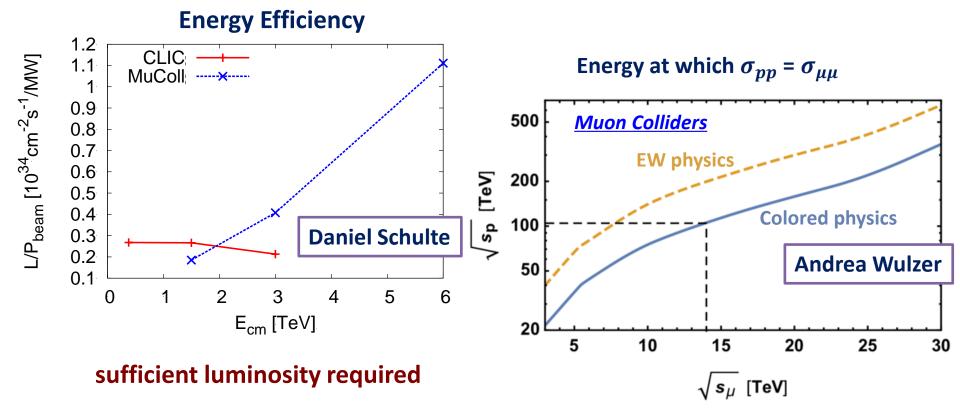
→ International Muon Collider Collaboration kick-off virtual meeting July 3rd, 2020

(>260 participants) <u>https://indico.cern.ch/event/930508/</u>

Linear vs Circular lepton e^+e^- collider

Muon beams specific properties

Muons are leptons with mass (105.7 MeV/c²) 207 times larger than e^{\pm}

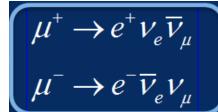

- ightarrow Negligible synchrotron radiation emission (∞m^{-4})
 - Multi-pass collisions (1000 turns) in collider ring:
- High luminosity with reasonable beam power and wall plug power needs
 - relaxed beam emittances & sizes, alignment & stability
 - Multi-detectors supporting broad physics communities
 - Large time (15 ms) between bunch crossings
 - No beam-strahlung at collision:
 - narrow luminosity spectrum
- \odot

- Multi-pass acceleration in rings or RLA:
- Compact acceleration system and collider
- Cost effective construction & operation
 - No cooling by synchrotron radiation in standard damping rings
- Requires development of novel cooling method

Why a multi-TeV Muon Collider?

cost-effective and unique opportunity

for lepton colliders @ Ecm > 3 TeV



Strong interest to reuse existing facilities and infrastructure (i.e. LHC tunnel) in Europe

Muons: Issues & Challenges

- Limited lifetime: 2.2 μs at rest

- Race against death: fast generation, acceleration & collision before decay
- Muons decay in accelerator and detector
 - Physics feasibility with large background?
 - Shielding of detector and facility irradiation
- Decays in neutrinos:
 - Ideal source of well defined electron and muons neutrinos in equal quantities :

The neutrino factory concept

» Limitation in energy reach by neutrino radiation

Generated as tertiary particles in large emittances

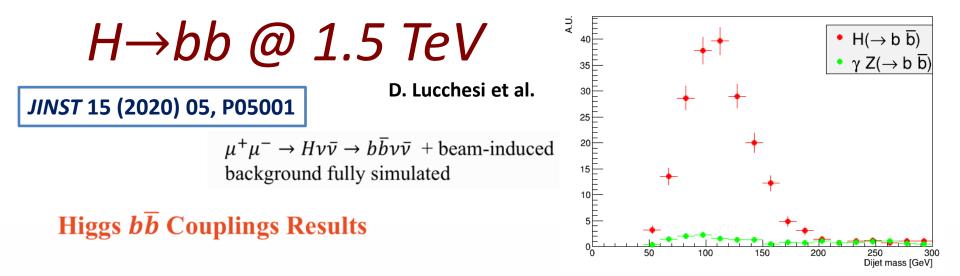
- powerful MW(s) driver
- novel cooling method (6D 10⁶ emittance reduction)

Development of novel ideas and technologies with key accelerator and detector challenges!

A unique facility

Jan 2021 nature physics

Muon colliders to expand frontiers of particle physics


K.Long, **D.Lucchesi**, M.Palmer, **N.Pastrone**, D.Schulte, V. Shiltsev

an idea over 50 years old has now the opportunity to become feasible

ESPP Input document: <u>Muon Colliders</u>

Different phyiscs benchmark simulated with Beam-Induced Background at 3 TeV to demonstrate feasibility and physics potential reach

- The instantaneous luminosity, \mathcal{L} , at different \sqrt{s} is taken from MAP.
- The acceptance, *A*, the number of signal events, *N*, and background, *B*, are determined with simulation.

\sqrt{s}	A	ϵ	L	\mathcal{L}_{int}	σ	N	В	$\frac{\Delta\sigma}{\sigma}$	<u>Δg_{Hbb}</u> g _{Hbb}
[TeV]	[%]	[%]	$[cm^{-2}s^{-1}]$	$[ab^{-1}]$	[fb]			[%]	[%]
1.5	35	15	$1.25 \cdot 10^{34}$	0.5	203	5500	6700	2.0	1.9
3.0	37	15	$4.4 \cdot 10^{34}$	1.3	324	33000	7700	0.60	1.0
10	39	16	$2 \cdot 10^{35}$	8.0	549	270000	4400	0.20	0.91

	\sqrt{s} [TeV]	\mathcal{L}_{int} [ab ⁻¹]	$\frac{\Delta g_{Hbb}}{g_{Hbb}}$ [%]
	1.5	0.5	1.9
Muon Collider	3.0	1.3	1.0
	10	8.0	0.91
	0.35	0.5	3.0
CLIC	1.4	+1.5	1.0
	3.0	+2.0	0.9

CLIC numbers are obtained with a modelindependent multi-parameter fit performed in three stages, taking into account data obtained at the three different energies.

Results published on JINTST as <u>Detector and</u> <u>Physics Performance at a Muon Collider</u>

International Collaboration

Project Leader: Daniel Schulte

Objective:

In time for the next European Strategy for Particle Physics Update, the Design Study based at CERN since 2020 aims to **establish whether the investment into a full CDR and a demonstrator is scientifically justified**.

It will **provide a baseline concept**, well-supported performance expectations and assess the associated key risks as well as cost and power consumption drivers.

It will also identify an R&D path to demonstrate the feasibility of the collider.

Scope:

- Focus on the high-energy frontier and two energy ranges:
- **3** TeV if possible with technology ready for construction in 10-20 years
- **10+ TeV** with more advanced technology, **the reason to choose muon colliders**
- Explore synergies with other options (neutrino/higgs factory)
- Define **R&D path**

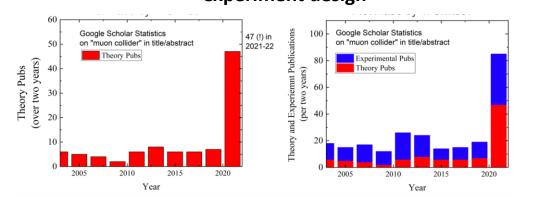
Web page:

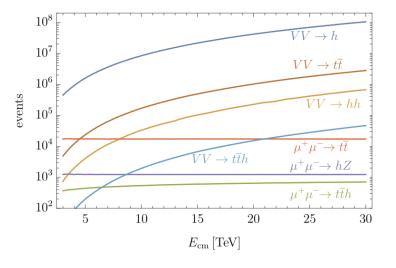
http://muoncollider.web.cern.ch

Physics potential

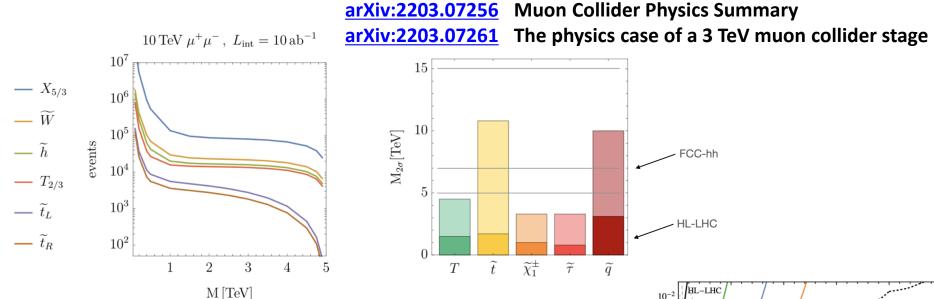
A dream machine to probe unprecedented energy scales and many different directions at once!

Direct searches	High-rate measurements	High-energy probes	Muon physics
Pair production, Resonances, VBF, Dark Matter,	Single Higgs, self coupling, rare and exotic Higgs decays, top quarks, …	Di-boson, di-fermion, tri-boson, EFT, compositeness,	Lepton Flavor Universality, b → sµµ, muon g-2, …

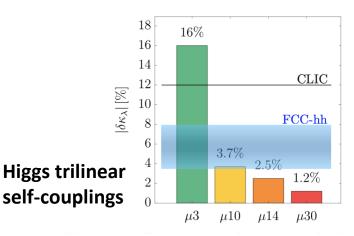



Great and growing interest in the theory community → many papers recently published, as:

The Muon Smasher's Guide,

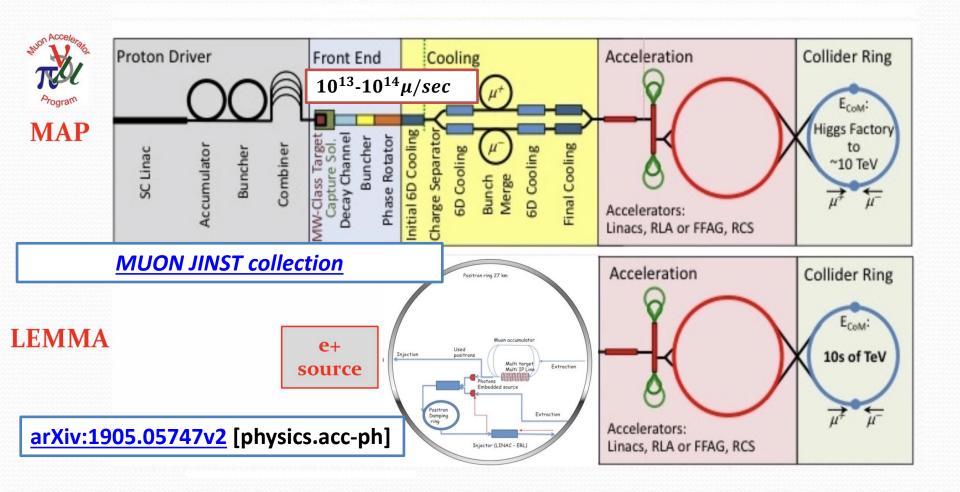

https://doi.org/10.48550/arXiv.2103.14043

Strong and crucial synergies to design the machine and the experiment to reach the physics goals with energy and luminosity allowing % precision measurements
 → Physics benchmarks steer machine parameters and experiment design



Physics reach in a nutshell

Higgs coupling sensitivities k-framework


	HL-LHC	HL-LHC +10 TeV	$\begin{array}{c} \text{HL-LHC} \\ +10 \text{TeV} \\ + ee \end{array}$
κ_W	1.7	0.1	0.1
κ_Z	1.5	0.4	0.1
κ_{g}	2.3	0.7	0.6
κ_{γ}	1.9	0.8	0.8
κ_c	-	2.3	1.1
κ_b	3.6	0.4	0.4
κ_{μ}	4.6	3.4	3.2
κ_{τ}	1.9	0.6	0.4
$rac{\kappa^*_{Z\gamma}}{\kappa^*_t}$	10	10	10
κ_t^*	3.3	3.1	3.1

10^{-2} 6 TeV pp 100 TeV, 30 ab-1 10-10 TeV $\sin^2 \gamma$ 14 TeV 10^{-4} $s_{\gamma} = m_h^2 / m_{\phi}^2$ $s_{\gamma} = m_h / m_d$ 30 TeV 95% C.L. exclusion 10^{-5} 5 10 15 20 0 m_{ϕ} [TeV]

Exclusion contour for a scalar singlet of mass $m\phi$ mixed with the Higgs boson with strength sin γ

proton (MAP) vs positron driven muon source

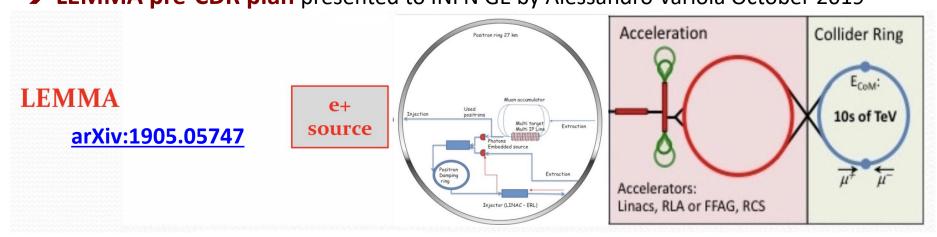
LEMMA: main idea Low EMittance Muon Accellerator

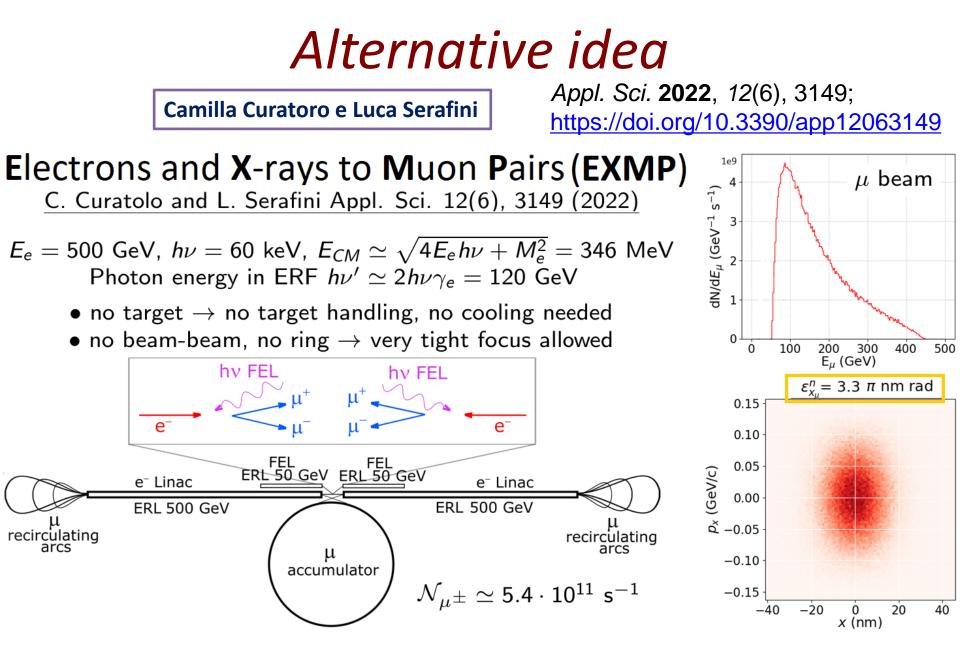
M. Antonelli and P. Raimondi, Snowmass Report (2013) - INFN-13-22/LNF Note

POSITRON DRIVEN MUON SOURCE : direct μ pairs production

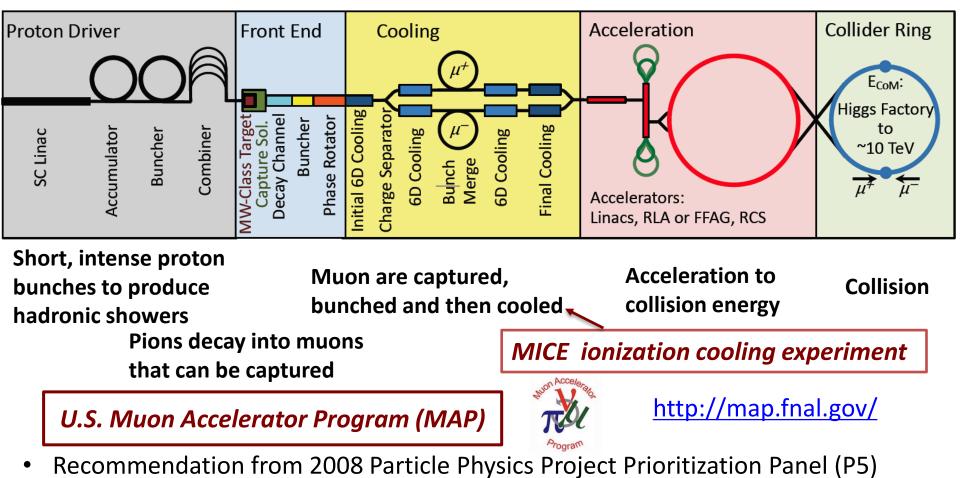
Muons produced from $e^+e^- \rightarrow \mu^+\mu^-$ at the $\mu^+\mu^-$ threshold @ $\sqrt{s} \approx 0.212$ GeV

Asymmetric collisions maximize the $\mu^+\mu^-$ pairs production cross section and minimize the $\mu^+\mu^-$ beam angular divergence and energy spread


- → 45 GeV positron beam impinging on a target (e⁻ at rest)
- → μ⁺μ⁻produced @ ~22 GeV with low transverse emittance with γ(μ) ≈200 and μ laboratory lifetime of about 500 μs
 Aimed at obtaining high luminosity with relatively small μ[±] fluxes thus reducing background rates and activation problems due to high energy μ[±] decays


Extremely promising

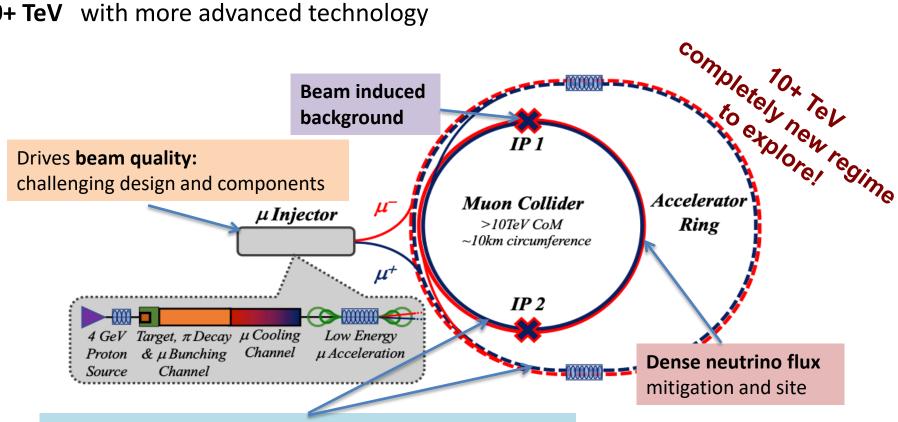
- 1) muon produced with low emittance \rightarrow "no/low cooling" needed
- 2) muon produced already boosted with low energy spread


But difficult

- **1)** Low production cross section: maximum $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \sim 1 \,\mu b$
- **2)** Low prodution efficiency (~ $9 \times 10^{-8} \mu$ per e^+ using a 3 mm Be target)
- **3)** Bremsstrahlung (high $Z \rightarrow Z^2$) & multiple scattering ($\sqrt{X_0}$) in production target
- **4) High heat load** and **stress** in μ production target
- 5) Synchrotron power O(100 MW) ← available 45 GeV positron sources
- need consolidation to overcome technical limitations to reach higher muon intensities
 LEMMA pre-CDR plan presented to INFN GE by Alessandro Variola October 2019

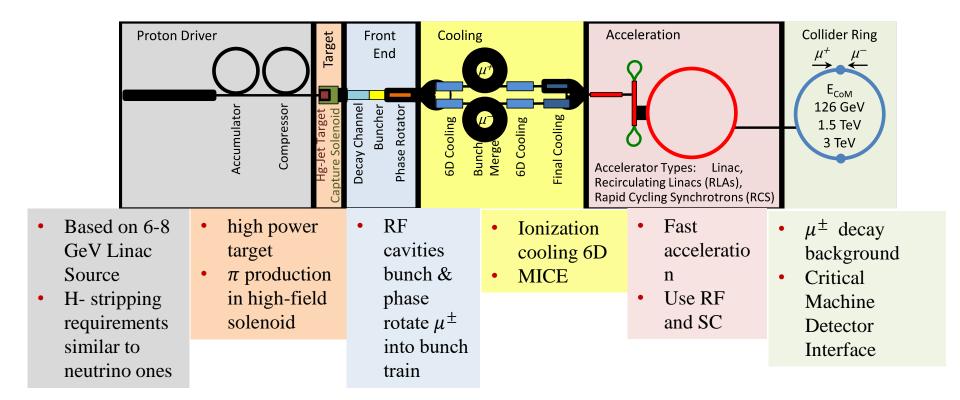
Proton-driven Muon Collider Concept

• Approved by DOE-HEP in 2011 → Ramp down recommended by P5 in 2014


AIM: to assess feasibility of technologies to develop muon accelerators for the Intensity and Energy Frontiers

International Design Study facility

Proton driver production as baseline


Focus on two energy ranges:

- technology ready for construction in 10-20 years 3 TeV
- **10+ TeV** with more advanced technology

Cost and power consumption drivers, limit energy reach e.g. 30 km accelerator for 10/14 TeV, 10/14 km collider ring

MAP to International Design Study

Luminosity and parameters goals

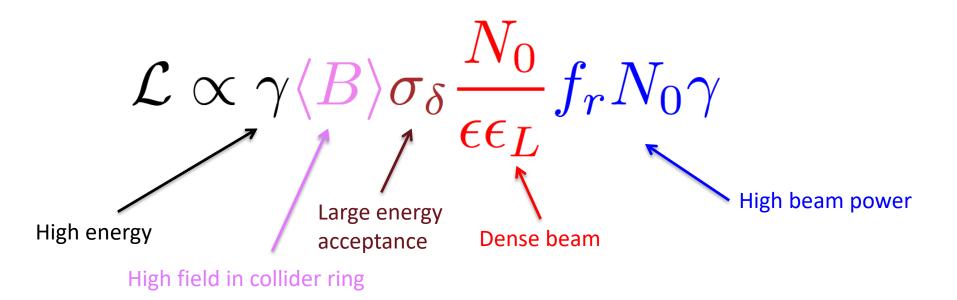
Target integrated luminosities

 $\mathcal{L} = (E_{CM}/10 \text{TeV})^2 \times 10 \text{ ab}^{-1}$

@ 3	TeV	~	1 ab ⁻¹	5 years
@ 10) TeV	~	10 ab ⁻¹	5 years
@ 14	4 TeV	~	20 ab ⁻¹	5 years

Note: currently consider 3 TeV and either 10 or 14 TeV

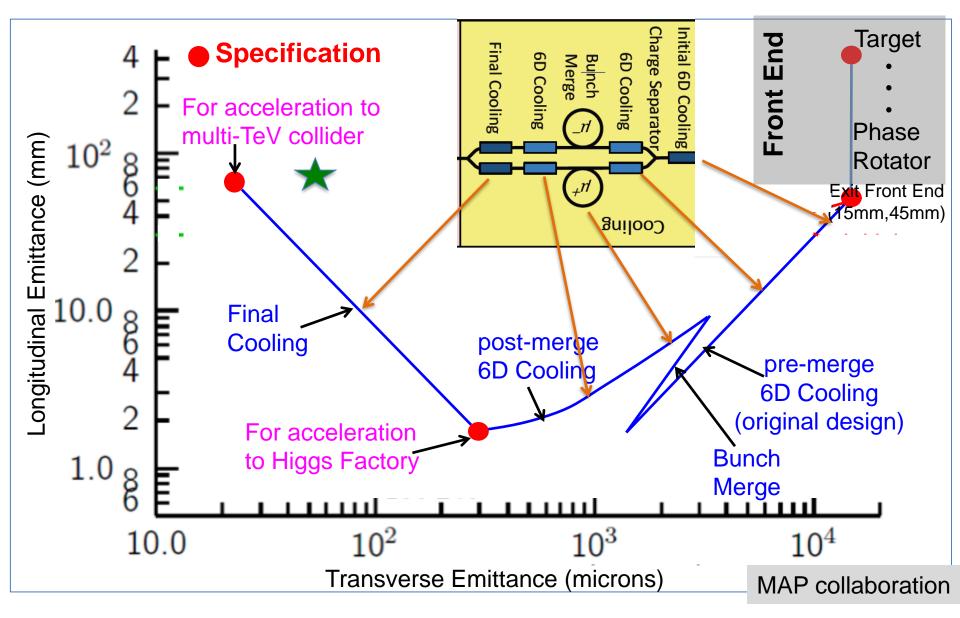
- Tentative parameters achieve goal in 5 years
- FCC-hh to operate for 25 years
- Might integrate some margins
- Aim to have two detectors


Now study if these parameters lead to realistic design with acceptable cost and power Tentative target parameters Scaled from MAP parameters

Comparison: CLIC at 3 TeV: 28 MW

Parameter	Unit	3 TeV	10 TeV	14 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
Ν	10 ¹²	2.2	1.8	1.8
f _r	Hz	5	5	5
P _{beam}	MW	5.3	14.4	20 🖌
С	km	4.5	10	14
	т	7	10.5	10.5
ε	MeV m	7.5	7.5	7.5
σ _E / E	%	0.1	0.1	0.1
σ _z	mm	5	1.5	1.07
β	mm	5	1.5	1.07
ε	μm	25	25	25
σ _{x,γ}	μm	3.0	0.9	0.63

Muon Collider Luminosity Scaling


Fundamental limitation Requires emittance preservation and advanced lattice design Applies to MAP scheme

Luminosity per power increases with energy Provided technologies can be made available

Constant current for required luminosity scaling

Cooling: Emittance Path

International Design Study facility

- IMCC started officially on July 3nd 2020: Web site
- Several institutions are collaborating, US via the Snowmass process
- Muon collider is part of European Accelerator R&D Roadmap <u>Yellow Report</u>
- A lot of contributions submitted to the Snowmass process

Accelerator R&D Roadmap Bright Muon Beams and Muon Colliders

International Design Study Collaboration GOAL

In time for the next European Strategy for Particle Physics Update, aim to **establish whether the investment into a full CDR and a demonstrator is scientifically justified**

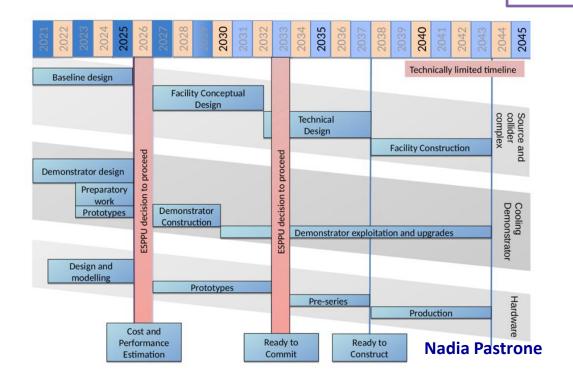
The Panel endorsed this ambition and concludes that:

- the MC presents enormous potential for fundamental physics research at the energy frontier
- → it is the future direction toward high-energy, high-luminosity lepton collider
- → it can be an option as next project after HL-LHC (i.e. operation mid2040s)
- at this stage the panel did not identify any showstopper in the concept and sees strong support of the feasibility from previous studies
- it identified important R&D challenges

The panel has identified a development path that can address the major challenges and deliver a 3 TeV muon collider by 2045

Nadia Pastrone

Accelerator R&D Roadmap


Bright Muon Beams and Muon Colliders

Panel members: D. Schulte, (Chair), M. Palmer (Co-Chair), T. Arndt, A. Chancé, J. P. Delahaye, A.Faus-Golfe, S.Gilardoni, P.Lebrun, K.Long, E.Métral, N.Pastrone, L.Quettier, T.Raubenheimer, C.Rogers, M.Seidel, D.Stratakis, A.Yamamoto Associated members: A. Grudiev, R. Losito, D. Lucchesi

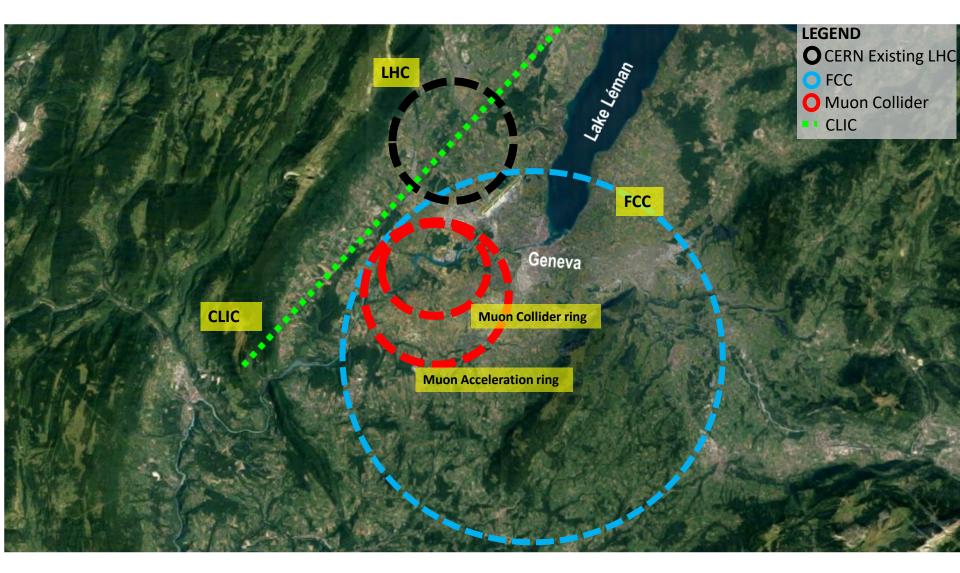
Intense preparation and review activities in 2021: 3 <u>Community Meetings</u> (May, July, October) and a dedicated <u>Muon Collider Physics and Detector Workshop</u> presented to CERN Council in December and published <u>https://arxiv.org/abs/2201.07895</u>

now under implementation by LDG + Council...

Technically limited timeline

A 3 TeV muon collider could be ready by 2045, as reviewed by the Roadmap

			Label	Begin	End	Description	Aspir [FTEy]	ational [kCHF]	Min [FTEy]	imal [kCHF]		
	Plan b				MC.SITE	2021	2025	Site and lawout				-
	Γ	IUI			MC.NF	2021 2022	2025 2026	Site and layout Neutrino flux miti-	15.5 22.5	300 250	13.5	300
					MC.M	2022	2020	gation system	22.3	250	0	U
					MC.MDI	2021	2025	Machine-detector interface	15	0	15	0
					MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
	•		entified		MC.ACC.HE	2022	2025	High-energy com- plex	11	0	7.5	0
	•	· · ·	bath that	t	MC.ACC.MC	2021	2025	Muon cooling sys- tems	47	0	22	0
car		ress the	e major		MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
			deliver a		MC.ACC.COLL	2022	2025	Collective effects across complex	18.2	0	18.2	0
3 TeV muon collider by 2045				MC.ACC.ALT	2022	2025	High-energy alter- natives	11.7	0	0	0	
					MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0
					MC.HFM.SOL	2022	2026	High-field solenoids	76	2700	29	0
						2021	2026	Fast-ramping mag- net system	27.5	1020	22.5	520
Sc	Scenarios				MC.RF.HE	2021	2026	High Energy com- plex RF	10.6	0	7.6	0
JU			3		MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0
Aspiratio	onal	Min	imal		MC.RF.TS	2024	2026	RF test stand + test cavities	10	3300	0	0
[FTEy] [k	kCHF]	[FTEy]	[kCHF]		MC.MOD	2022	2026	Muon cooling test module	17.7	400	4.9	100
445.9 1	.1875	193	2445		MC.DEM	2022	2026	Cooling demon- strator design	34.1	1250	3.8	250
1					MC.TAR	2022	2026	Target system	60	1405	9	25
					MC.INT	2022	2026	Coordination and integration	13	1250	13	1250
								Sum	445.9	11875	193	2445
~70 N	/leu/!	5 years	s		Nad	lia Past	rone					29

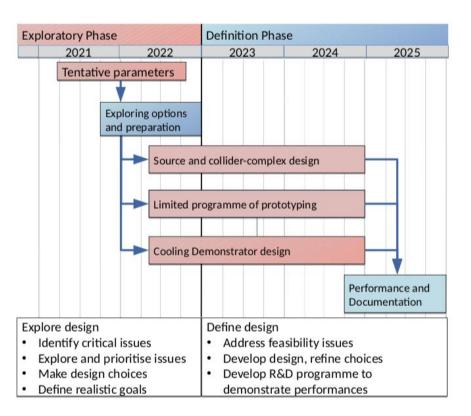

Nadia Pastrone

INFN and the International Community

CONTEXT:

- Laboratory Directors' Group (LDG) initiated a muon collider collaboration July 2, 2020
- CERN Medium Term Plan 2021-2025 dedicated budget line 2MCHF/year
- International Design Study based at CERN → MoC signed by INFN July 2021 the project encompasses physics, machine, detector and Machine Detector Interface
- European LDG Accelerator R&D Roadmap → presented to December Council 2021 dedicated Muon Beams Panel - but also synergies in High field magnets, RF and ERL
- European ECFA **Detector R&D Roadmap** → **presented to December Council 2021** Muon collider @ 10 TeV is one of the targeted facilities emerging from the EPPSU
- US SnowMass Muon Collider Forum **since 2021** share ideas and studies across frontiers
- Snowmass/P5 process in the US → ready by 2023
- Submission of HORIZON-INFRA-2022-DEV-01-01 EU project for Design Study April 2022
 Research infrastructure concept development → supported by TIARA

Footprint of future colliders @ CERN


Key Challenge Areas

- Physics potential evaluation, including detector concept and technologies
- Impact on the environment
 - Neutrino flux mitigation and its impact on the site (first concept exists)
 - Machine Induced Background impact the detector, and might limit physics
- High-energy systems after the cooling (acceleration, collision, ...)
 - Fast-ramping magnet systems **I NEW!!**
 - High-field magnets (in particular for 10+ TeV) **IV NEW!!**
- High-quality muon beam production NEW!!
 - Special RF and high peak power
 - Superconducting solenoids
 - Cooling string demonstration (cell engineering design, demonstrator design)
- Full accelerator chain
 - e.g. proton complex with H- source, compressor ring \rightarrow test of target material

High energy complex requires known components

➔ synergies with other future colliders

Plan for next 5 years

- End-to-end design with all systems
- Key performance specifications
- Evidence to achieve luminosity goal:
- beam parameters, collective effects, tolerances ...
- Evidence that the design is realistic:
- performance specification supported by technology
- key hardware performances
- radiation protection, impact and mitigation of losses
- cost and power scale, site considerations
- A path forward
- Test facility
- Component development
- Beam tests
- System optimisation

MUon collider STrategy network – MUST

INFN – CERN (+BINP) – CEA – IJCLAB – KIT – PSI – UKRI – (USA not beneficiary)

Task 5.1

May 1, 2021 – April 30, 2024

It will serve as the common ground for a growing international muon-collider collaboration MUST will support to establish an international collaboration and develop an optimized R&D roadmap towards a future muon collider, including the definition of optimum test facilities and possible intermediate steps

AUSE 1 January 2022 - 31 December 2025 EU RISE project

aMUSE further provides an excellent platform for an ambitious EU-US network to advance the development of muon beams.

Objectives WP3 – leader: Donatella Lucchesi

- Study techniques of unstable particles beam cooling muon beams at different energies, aiming to validate the simulation with experimental tests
- High energy muon beams: determine the optimal interaction region configuration by studying the beam induced background and new detector technologies able to handle it
- Design and simulate detector for different centre of mass energies
- Evaluate the radiation hazards related to the neutrino flux emitted by the muon beams.

FAST

Key R&D challenges

Mark Palmer

Key F	R&D Challenges	Minternational Collaboration
Target	 Issues Multi-MW Targets High Field, Large Bore Capture Solenoid 	 Status Ongoing >1 MW target development Challenging engineering for capture solenoid
Front End	 Energy Deposition in FE Components RF in Magnetic Fields (see Cooling) 	Current designs handle energy deposition
Cooling	 <i>RF in</i> Magnetic Field High and Very High Field SC Magnets Overall Ionization Cooling Performance 	 MAP designs use 20 MV/m → 50 MV/m demo >30 T solenoid demonstrated for Final Cooling Cooling design that achieves most goals
Acceleration	 Acceptance Ramping System Self-Consistent Design 	 Designs in place for accel to 125 GeV CoM Magnet system development needed for TeV-scale Self-consistent design needed for TeV-scale
Collider Ring	 Magnet Strengths, Apertures, and Shielding High Energy Neutrino Radiation 	 Self-consistent lattices with magnet conceptual design up to 3 TeV > ~5 TeV - v radiation solution required
MDI/Detector	 Backgrounds from μ Decays IR Shielding 	 Further design work required for multi-TeV Initial physics studies at 1.5 TeV promising

Design Study activities: EU project

HORIZON-INFRA-2022-DEV-01-01: Research infrastructure concept development

Total EU budget requested 3 Meu

Since 2022 INFN-Accelerator is joining Muon Collider studies on technologies (Magnets - RF – prototyping) starting on this project

Design study critical items requiring dedicated studies:

- combination of very large number of protons into each short pulse for muon production
- proton beam impact on the target and the surrounding solenoid
- achievement of small final beam emittance in the muon cooling system
- cost and power effective acceleration of the muon beams in the RCSs
- focusing of the beam in the collision point
- impact of muon beam decay on the facility, in particular the collider ring
- impact of beam-induced background on the detector performance
- potential environmental impact of the collider

EU DESIGN STUDY PROPOSAL WORKSHOP April 12, 2022 **Please register at:** <u>https://indico.cern.ch/event/1143753/</u>

EU project: WP

WP 2: Physics and Detector Requirements

Leader D. Lucchesi Univ. PD + INFN (M. Casarsa) + many + + Univ. PV associated Link to the physics and detector studies, to provide a database with Beam-Induced Background (BIB) to the physics community and maintain a simplified model of the detector for physics studies. Based on feedback from the physics community, it will provide feedback and guidance to the accelerator design.

WP 3: The Proton Complex

Leader ESS-CERN-UU

key challenge of the proton complex design, the accumulation of the protons in very highcharge bunches and determine the required basic parameters of the complex.

WP 4: The Muon Production and Cooling

Leader STFC-CERN+ UK

Production of the muons by the proton beam hitting a target and the subsequent cooling

WP 5: The High-energy Complex

Leader CEA(Antoine Chance)-CERN-STFC-INFN (F. Collamati – RM1-TO) only MDI Acceleration and collision complex of the muons. Interaction Region and Machine Detector Interface.

EU project: WP

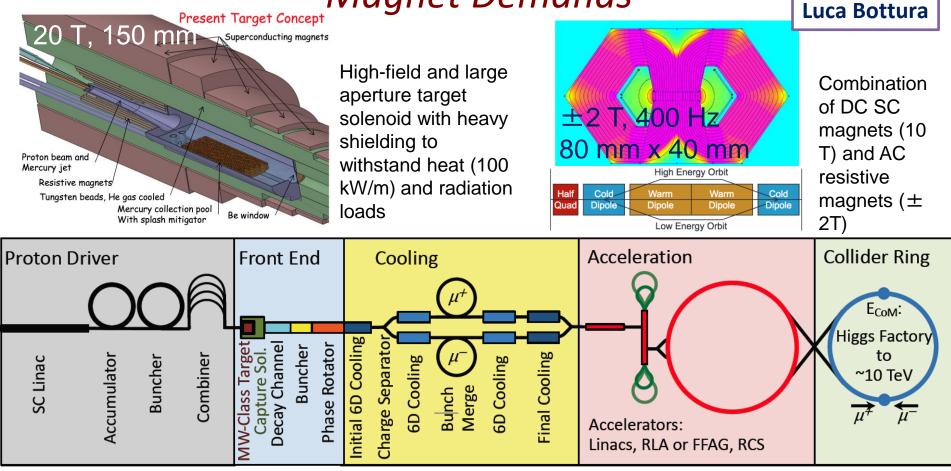
WP 6: Radio Frequency Systems

Leader CEA(C. Marchand)+INFN(D. Giove- MI - LNL)-CERN++++

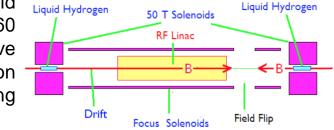
Radio Frequency (RF) systems of the muon cooling and the acceleration complex.

WP 7: Magnet Systems

Leader CERN(L. Bottura)-CERN+++ INFN(GE, MI, BO) + Univ. BO associated Most critical magnets of the muon collider. In particular focus on the solenoids of the muon production and cooling, which are specific to the muon collider. The fast-ramping magnet system, which has ambitious requirements on power flow and power efficiency and limits the energy reach of the collider,


WP 8: Cooling Cell Integration

Leader CERN(R. Losito)+Univ. MI (L. Rossi)-STFC-INFN(M. Statera – mag. e D. Giove – RF) Design of the muon cooling cell, which is a unique and novel design and which faces integration challenges: interact to address the challenges of the muon collider concept.


Summary of IMC RF systems

					/www.urc		\$/20/10/96	ozomglwm/M	C_KF%203	· · · · ·					
System			Driver			Front-End Cooling				Acceleratio	n	Collider	TOTAL	CLIC	
Sub-			Driver Linac H- (SPL like)		Accum	Capture&	Initial	6D	Final	Injector	RLAs	RCS	Ding	ІМС	Acceleratio
system					&Comp	Bunching		(2 lines)	(2 lines)	Linac (2stages)	(3stages)	Ring	IIVIC	n	
Reference expert			F.Gerigk		?	D.Neuffer	C.Rogers	D.Stratakis	C.Rogers	A.Bo	ogacz	S.Berg	E.Gianfelic	e	
	Energy	GeV/c	0.16	5	5	0.255	0.255	0.255	0.255	1.25	62.5	1500	1500		1500
Beam (system exit) RF cavities	# bunches (μ+ or μ-)	#		1	12	12	1	1	1.25	1	1	1300		312	
	Charge/bunch	E12	40 mA		500	3.57	2.56	7.21	4.39	3.73	3.17	2.22	2.20		3.72E-03
	Rep Freq	Hz	5	5	5	5	5	5	5	5	5	5	5		50
	Norm Transv Emitt	rad-m	-			1.5E-02	3.0E-03	8.3E-05	2.5E-05	2.5E-05	2.5E-05	2.5E-05	2.5E-05		660/20E-06
	Beam dimens. (H/V) in RF		?	?	?	?	?	?	?	?	?	?	?		1?
	Norm Long Emitt	rad-m			-	4.5E-02	2.4E-02	1.8E-03	7.0E-03	7.0E-03	7.0E-03	7.0E-03	7.0E-03		
	Pulse/Bunch length	m	2.2	ms	0.6 (2ns)		1.1E+01	9.2E-02	9.2E-02	4.6E-02	2.3E-02	2.3E-02	5.0E-03		4.4E-05
	Power (µ+ and µ-)	W	6.40E+04		2.0E+06		1.3E+04	3.0E+03	1.8E+03	7.6E+03	3.2E+05	5.4E+06	5.3E+06		2.8E+07
	Technology		NC Linac4	SC	SC	NC	NC	NC Vacuum		SC	SC	SC	SC 1		NC High Grad
	Number of cavities	#	23	244	2	120	367	7182	32	52	360	2694	?	11076	149000
	RF length	m	46	237	1	30	105	1274	151	82	1364	2802	?	6092	30000
	Frf	MHz	352	704	44	326to493	325	325-650	20-325	325	650-1300	1300	800	4 to 1300	12000
	Grf	MV/m	1-3.7	19 - 25	2	20	20 to 25	19-28.5	7.2-25.5	20	25 to 38	35	?	1 to 38	100
	Aperture	mm	28	80		?	?	?	?	300	150	75	120	28 to 300	2.75
	Magnetic Field	T	0	0		2	3Т	1.7-9.6	1.5-4	0	0	0	0	0 to 9.6	0
	Installed RF field	MV	169	5700	4	434	2618	30447	1836	1640	50844	98062	250	1.92E+05	3.00E+06
	Beam Energy gain	MeV	160	4840	0	0	0	0	0	1250	62500	1437000	0	1.51E+06	1.50E+06
	Recirculations	#	1	1		1	1	1	1	1	4.5 to 5	13 to 23	1000	1 to 1000	1
	RF Power/pulse (ղ=0.6)	MW	25	220	3.E-01	99	429	1172	43	52	360	2024	1.98E-02	4425	1.2E+07
RF power sources	Technology		klystron	klystron						Klytro	on-IOT				Two Beam
	Cavities/Power Source	#	23	244		4				1 to 2	1 to 2				2
	RF Pulse (fill+beam) estim	ms	2.20	2.20	3.20	0.10	0.10	0.10	0.10	0.03	0.06	0.73	14.80		0.142
	Prf/Power Source	MW	11.7	1.93						1	1				15
	Total Power Sources	#	17	244		30				52	341			?	1638
	Installed Peak RF Power	MW	34	275		164	515	1407	52	52	341	2429	2.38E-02	5269	2.46E+04
	Average RF power (η=0.6)	MW	0.27	2.13	0.01	0.05	0.21	0.59	0.02	0.01	0.11	14.88	0.00	18.28	143
	Wall plug power (n=0.6)	MW	0.45	3.55	0.01	0.08	0.36	0.98	0.04	0.01	0.18	24.81	0.00	30.46	289

Ultra-high-field solenoids (40...60 T) to achieve desired muon beam cooling

Open midplane or large dipoles and quadrupoles in the range of 10...16 T, bore in excess of 150 mm to allow for shielding against heat (500 W/m) and radiation loads

Magnet preliminary Summary

Luca Bottura et al

Complex	Magnet	Field Gradient (T) / (T/m)	Field rate (T/s)	Aperture (mm)	Length (m)	Heat load (kW/m)	Candidate Technologies
Target and Capture	Solenoid	20	N/A	150	1	100	Hybrid (SC+resistive) All-SC (LTS+HTS)
Cooling	Solenoid	214 4060	N/A	100050 50	1 0.5	TBD TBD	All SC (LTS+HTS)
Accelerator	NC Dipole	± 2	500 10,000	80x40	5	TBD	SC (LTS) DC + NC AC SC (LTS) DC + SC (HTS) AC FFAG
Collider	Dipole	1016	N/A	150	15	0.5	Nb ₃ Sn or Nb-Ti+HTS
	Quadrupole	250300	N/A	150	10	TBD	Nb ₃ Sn or Nb-Ti+HTS

Magnet R&D impact on Science and Society

Luca Bottura

- R&D on the magnet technology necessary for a muon collider has multiple implications for other fields of science, industry and society. Below some relevant examples:
 - The target solenoid requires large fields (15 T) in a large bore (2 m), in the range of field and geometry relevant for a full-body MRI of the next generation[1], or solenoid magnets for fusion[2]
 - Ultra-high field solenoids (40...60 T) with modest bore (50 mm) as required by the *final cooling stage* share the challenges of magnets for high-field science[3-5], as well as solenoids for NMR spectroscopy [6]
 - The fast-ramped magnets planned in the acceleration stage (4 T field swing, 400 Hz) are relevant to the development of rapid cycled synchrotrons for intense beams, nuclear physics, medical applications, and accelerator-driven reactors and transmutation systems [7]
 - Energy and power management for the fast ramped magnets in the accelerator complex, typically tens of MJ on the time scale of 1 ms, i.e. tens of GW, share challenges with pulsed power conversion for high-field magnets, as well as energy storage and power management for the power grid
 - Large aperture dipoles and quadrupoles for the collider will profit from the stress-management techniques developed for High-Field Magnets

Impact - References

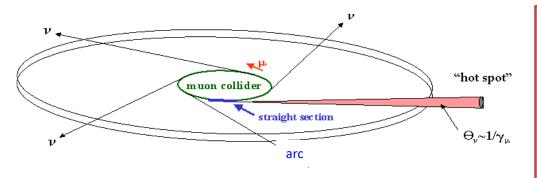
[1] "The most powerful MRI scanner in the world delivers its first images!", Press Release,2021, https://www.cea.fr/english/Pages/News/premieres-images-irm-iseult-2021.aspx

[2] P. Libeyre, et al., "From manufacture to assembly of the ITER central solenoid", Fus. Eng. Des., 146(a) (2019), pp. 437-440

[3] High Magnetic Field Science and Its Application in the United States, Current Status and Future Directions, National Academies Press, 2013, ISBN: 978-0-309-38778-1

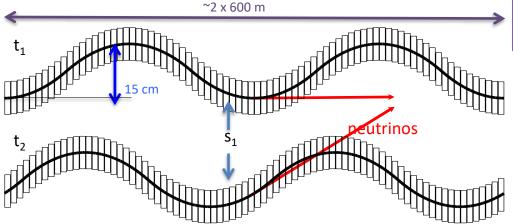
[4] Final Report Summary - EMFL (Creation of a distributed European Magnetic Field Laboratory), EU Grant agreement ID: 262111, 2014,

https://cordis.europa.eu/project/id/262111/reporting


[5] S. Hahn, et al., "45.5-Tesla Direct-Current Magnetic Field Generated with a High-Temperature Superconducting Magnet", Nature, 570 (2019) pp. 496–499

[6] "Bruker Announces World's First 1.2 GHz High-Resolution Protein NMR Data", Press Release, 2019, https://ir.bruker.com/press-releases/press-release-

details/2019/Bruker-Announces-Worlds-First-12-GHz-High-Resolution-Protein-NMR-Data/default.aspx


[7] Y. Fuwa, et al., "Design of Multi-MW Rapid Cycling Synchrotron for Accelerator Driven Transmutation System", Proc. IPAC 2018, (2018), pp. 1057-1059

Neutrino Flux Mitigation

Need mitigation of arcs at 10+ TeV:

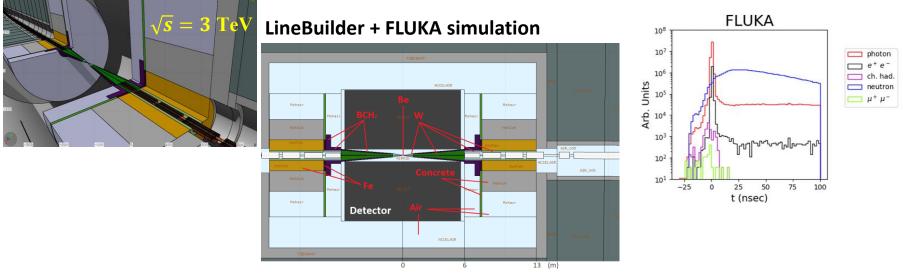
idea of Mokhov, Ginneken to move beam in aperture our approach: move collider ring components, e.g. vertical bending with 1% of main field

Legal limit 1 mSv/year MAP goal < 0.1 mSv/year Our goal: arcs below threshold for legal procedure < 10 µSv/year LHC achieved < 5 µSv/year

3 TeV, 200 m deep tunnel is about OK

Opening angle ± 1 mradiant

14 TeV, in 200 m deep tunnel comparable to LHC case

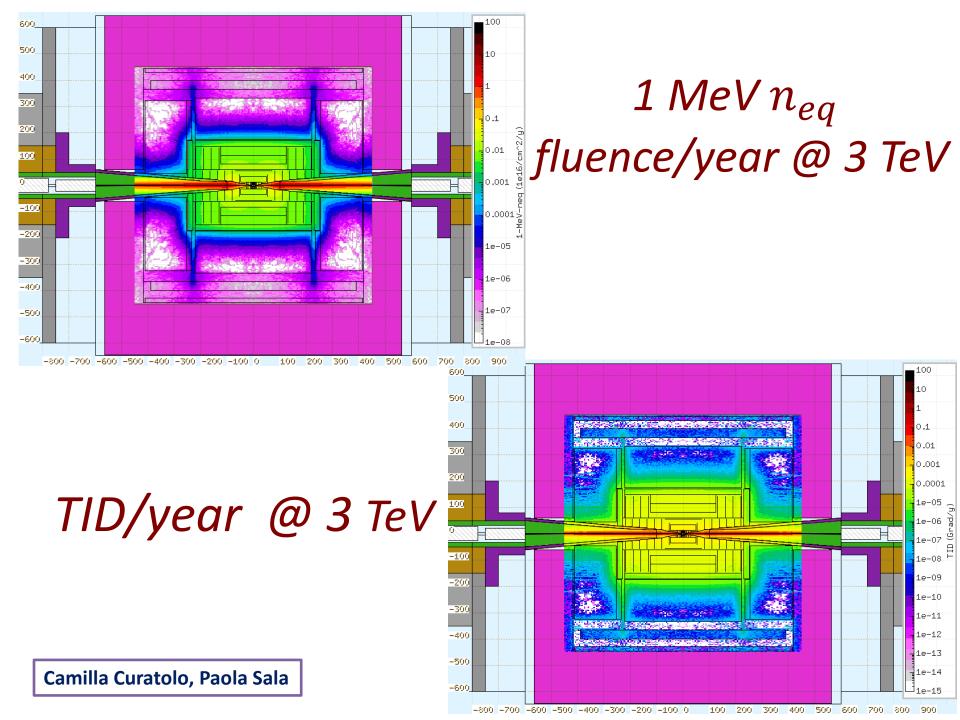

Need to study mover system, magnet, connections and impact on beam

Working on different approaches for experimental insertion

Machine Detector Interface

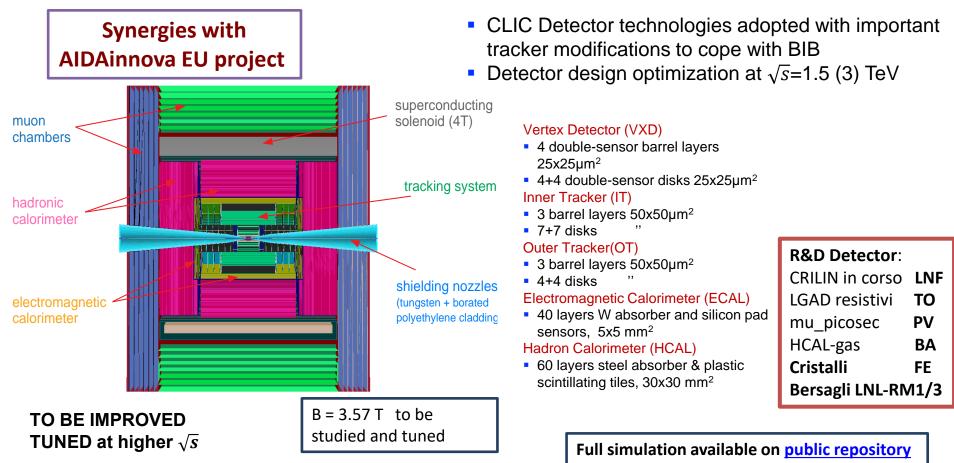
Advanced assessment of beam-induced background at a muon collider F. Collamati, C. Curatolo, D. Lucchesi, A. Mereghetti, P. Sala *et al.* 2021 <u>JINST 16 P11009</u>

Study Beam-Induced Background @ $\sqrt{s} = 1.5$ and 3 TeV, using MAP lattice – nozzle optimized at 1.5 TeV



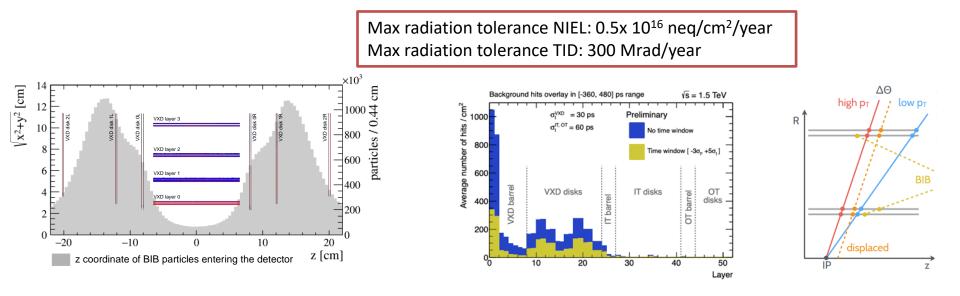
First MDI Kick-off meeting @ November 2021

→ first lattice and MDI studies @ 10 TeV by CERN


MDI WG: C.Carli, A. Lechner, CERN, N. Mokhov, S.Jindariani, FNAL, D.Lucchesi, N.Pastrone, INFN

The machine elements, MDI and interaction region must be properly designed and optimized @ each collider energy

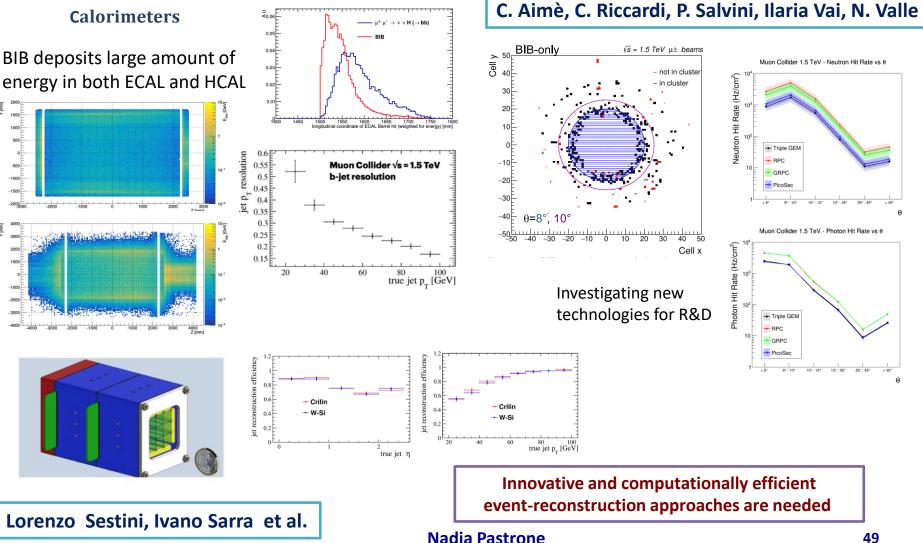
Detector studies @ $\sqrt{s} = 1.5$ TeV


<u>arXiv:2203.07964</u> Simulated Detector Performance at the Muon Collider <u>arXiv:2203.07224</u> Promising Technologies and R&D Directions for the Future Muon Collider Detectors

Quite advanced conceptual design for 1.5 TeV and 3 TeV → More R&D on technologies required @ 10+ TeV

Tracker detector @ 1.5 TeV

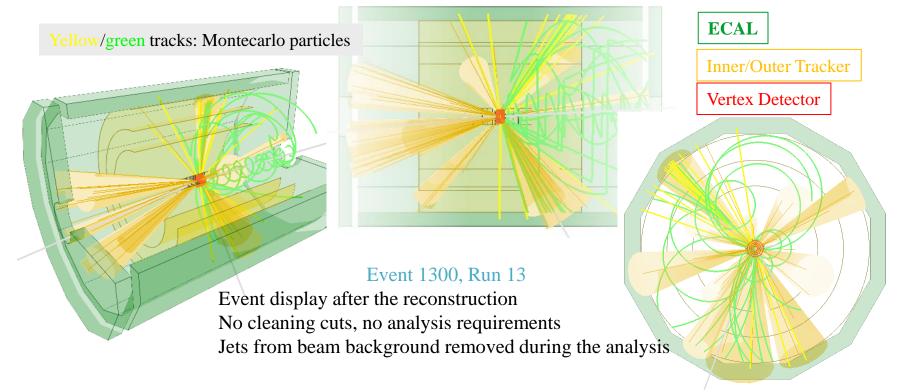
Nazar Bartosik, Massimo Casarsa et al.


- Vertex detector properly designed to not overlap with the BIB hottest spots around IR
- Timing window applied to reduce hits from out-of-time BIB
- Granularity optimized to ensure $\lesssim 1\%$ occupancy
- Realistic digitization in progress → BIB suppression based on cluster shape
- If primary vertex could be known before → effective angular matching of hit doublets
- To be tuned in presence of secondary vertices or long-lived particles

Calorimeters and Muon detectors

timing and longitudinal measurements play a key role in the BIB suppression

Muon System


Low BIB contribution, concentrated in the low-radius endcap region

High Precision Measurements

Donatelle Lucchesi et al.

$\mu^+\mu^- ightarrow Hx ightarrow b\overline{b}$ x with Beam-Induced Background at 3 TeV

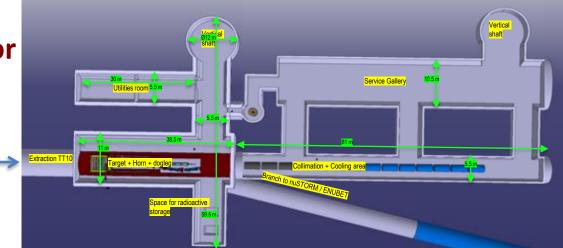
Different phyiscs benchmark simulated with Beam-Induced Background at 3 TeV to demonstrate feasibility and physics potential reach

arXiv:2203.07261The physics case of a 3 TeV muon collider stagearXiv:2203.07964Simulated Detector Performance at the Muon Collider

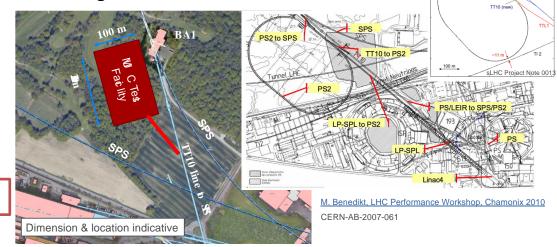
Demonstrator and test facilities

Production and cooling complex novel and unique to the muon collider

- Many components are unconventional
 - ✓ e.g. high-gradient cavities in magnetic field with Be windows or filled with gas
 - ✓ massive use of absorbers in the beam path
- Novel technologies beyond MAP design can be considered
 - ✓ e.g. very short RF pulse to reduce breakdown probability
- Compact integration is required to maximise muon survival
 ✓ complex lattice design optimisation
- Almost no experience with beam in these components, MICE has been a limited model (no RF, single muons)


Test Facility is needed where muons are produced and cooled

Demonstrator and test facilities


(Muon production) and Cooling Demonstrator @ CERN

Strong synergies with nuSTORM and ENUBET

First attempt to design a site Great opportunity to contribute

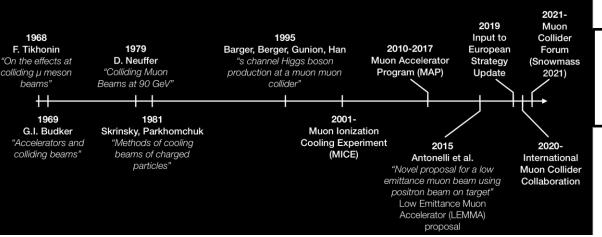
It could be close to TT10, and inject beam from PS It would be on molasse, no radiation to ground water

Test facilities for enabling tecnologies: RF, Magnets, Target materials.....

Strong synergies with other future projects

Conclusions e plans

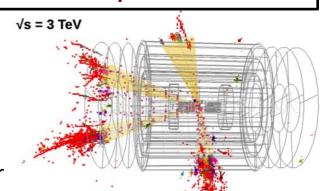
International Collaboration GOALs:


- pre-conceptual design report with cost and power scale
- test facility conceptual design
- prepared R&D programme
- \rightarrow updated timeline: Muon collider $\sqrt{s} = 3$ TeV ready to take data after HL-LHC
- Design Study work getting well organized in WG
 - → a good team on accelerator technology on board NOW also @ INFN!
- HORIZON-INFRA-2022-DEV-01-01 EU project almost ready to be submitted
 - → Beneficiaries: INFN, Univ. MI, Univ. PD Associated: Univ. BO, Univ. PV
- Mandatory to consolidate resourses mainly on accelerator

→ IMPORTANT INFN support – discussed with management in Nov. 2021

- 2 new PJAS @ CERN started in March 2022 (50% on CMS)
- **5 SnowMass whitepapers** submitted March 2022 **>** Frontiers papers to be submitted
 - arXiv:2203.08033 A Muon Collider Facility for Physics Discovery
 - arXiv:2203.07256 Muon Collider Physics Summary
 - arXiv:2203.07261 The physics case of a 3 TeV muon collider stage
 - arXiv:2203.07964 Simulated Detector Performance at the Muon Collider
 - arXiv:2203.07224 Promising Technologies and R&D Directions for the Future Muon Collider Detectors

A brief history of muon colliders


(A wholly incomplete timeline)

- New key technologies are becoming available
 - → Time scale is becoming realistic for a multi-TeV collider
- New Physics opportunities
 - → Higher energy = Higher luminosity
 - ➔ Direct searches+precision reach physics program

Advances in detector and accelerator pair with the opportunities of the physics case

Ready?

 $\mu^+\mu^- \rightarrow HH \nu\nu \rightarrow bbbb\nu\nu$

Design Study INFRADEV EU project to be submitted April 2022

Grazie!

specialmente a

M.E. Biagini, S. Guiducci, D. Lucchesi, M. Palmer, D. Schulte e molti altri

• CERN website

https://muoncollider.web.cern.ch/

- INFN Confluence website: full simulation <u>https://confluence.infn.it/display/muoncollider</u>
- International Design Study Indico @ CERN https://indico.cern.ch/category/11818/
- Muon Collider SnowMass Forum USA <u>https://indico.fnal.gov/event/47038/</u>

Please subscribe at the

CERN e-group "muoncollider":

MUONCOLLIDER-DETECTOR-PHYSICS

MUST-phydet@cern.ch

MUONCOLLIDER-FACILITY

MUST-mac@cern.ch

64th ICFA Beam Dynamics Workshop on High Luminosity Factories eeFACT22 Frascati INFN National Laboratories September 12-15 2022

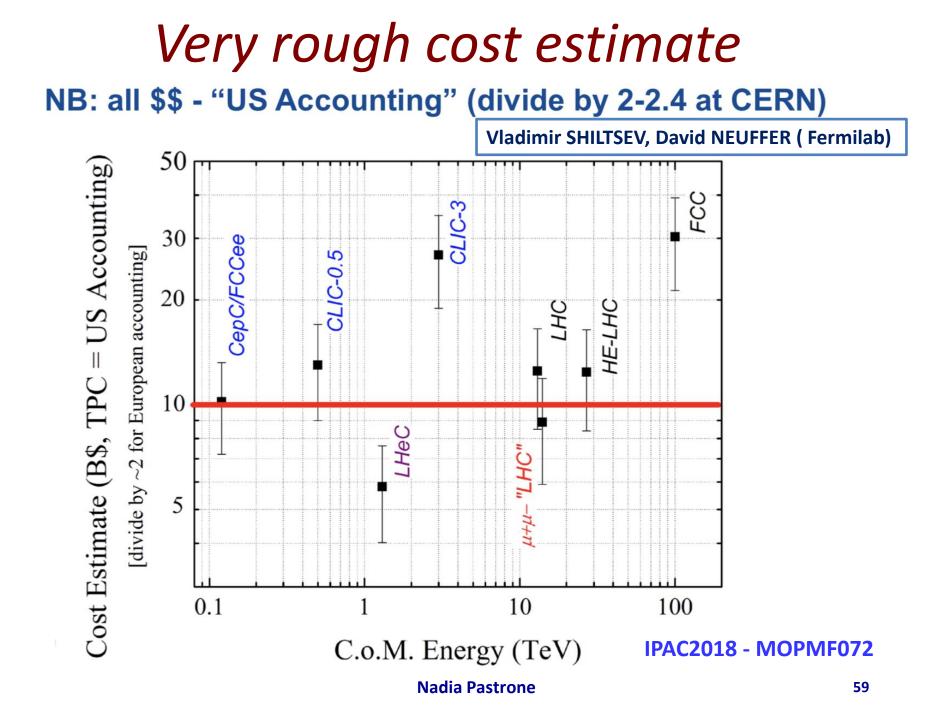
https://agenda.infn.it/event/21199/

extras

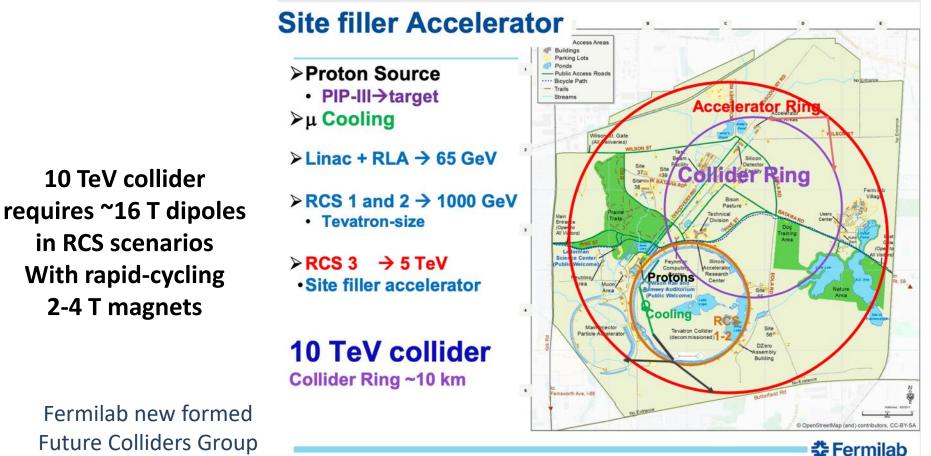
Community Meeting WG

Radio-Frequency (RF): Alexej Grudiev (CERN), Jean-Pierre Delahaye (CERN retiree), Derun Li (LBNL), Akira Yamamoto (KEK) Magnets: Lionel Quettier (CEA), Toru Ogitsu (KEK), Soren Prestemon (LBNL), Sasha Zlobin (FNAL), Emanuela Barzi (FNAL) High-Energy Complex (HEC): Antoine Chance (CEA), J. Scott Berg (BNL), Alex Bogacz (JLAB), Christian Carli (CERN), Angeles Faus-Golfe (IJCLab), Eliana Gianfelice-Wendt (FNAL), Shinji Machida (RAL) Muon Production and Cooling (MPC): Chris Rogers (RAL), Marco Calviani (CERN), Chris Densham (RAL), Diktys Stratakis (FNAL), Akira Sato (Osaka University), Katsuya Yonehara (FNAL) **Proton Complex (PC):** Simone Gilardoni (CERN), Hannes Bartosik (CERN), Frank Gerigk (CERN), Natalia Milas (ESS) **Beam Dynamics (BD):** Elias Metral (CERN), Tor Raubenheimer (SLAC and Stanford University), Rob Ryne (LBNL) Radiation Protection (RP): Claudia Ahdida (CERN) Parameters, Power and Cost (PPC): Daniel Schulte (CERN), Mark Palmer (BNL), Philippe Lebrun (CERN retiree and ESI), Mike Seidel (PSI), Vladimir Shiltsev (FNAL), Jingyu Tang (IHEP) Machine Detector Interface (MDI): Donatella Lucchesi (University of Padova and INFN), Christian Carli (CERN), Anton Lechner (CERN), Nicolai Mokhov (FNAL), Nadia Pastrone (INFN), Sergo R Jindariani (FNAL) **Synergy:** Kenneth Long (Imperial College), Roger Ruber (Uppsala University), Koichiro Shimomura (KEK) **Test Facility (TF):** Roberto Losito (CERN), Alan Bross (FNAL), Tord Ekelof (Uppsala University)

Physics & Detector:WG 1: Physics Potential: Andrea Wulzer (EPFL&CERN) et al.Donatella Lucchesi (Univ. Padova - INFN)WG 2: Detector performance (with several focus areas)WG 3: Detector R&D and Software & Computing development

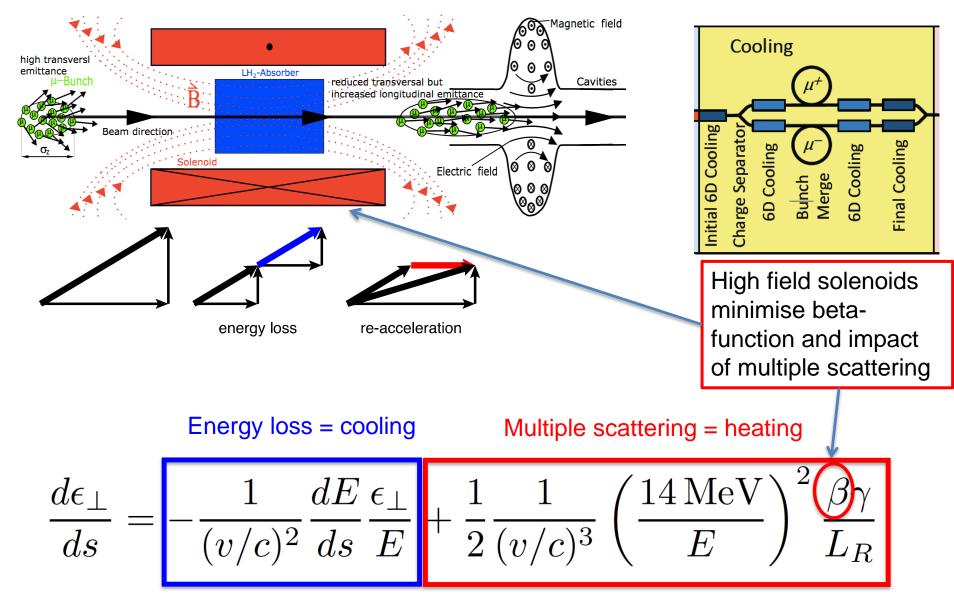

Staged approach and workload

3 TeV collider: physics potential comparable to CLIC at 3 TeV

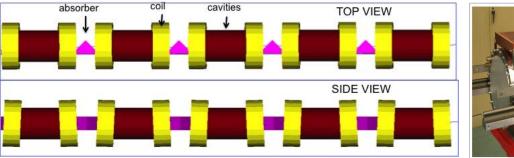

- option that could be realized much faster than a 10 TeV option:
 - It is cheaper, much more compact with a smaller power consumption
 - It can accept more compromises in technology performance
- e.g. current ring magnets are comparable in performance to HL-LHC magnets

10 TeV collider

- could then be realized using almost all infrastructure from 3 TeV, but collider ring
- 3 and 10 TeV collider designs share all systems
 - except collider ring and 1.5 to 5 TeV accelerator rings
 - limited lattice design work more work for MDI
- Some technology challenges are more important at 10 than at 3 TeV
 - higher dipoles fields in collider (O(15 T)) stronger final focus quadrupoles (O(18-20 T))
 - shorter bunches in cavities of last accelerator ring
 - would like more performance accelerator ring systems to cut length and cost
- Total additional effort seems acceptable given the importance

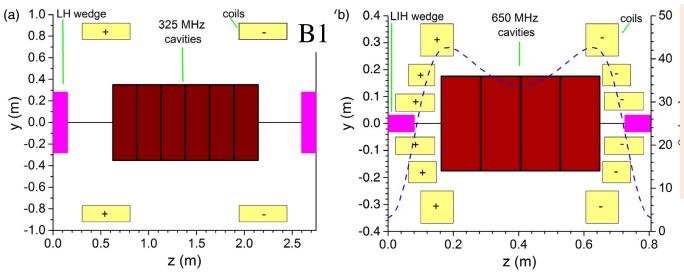


Muon Collider @ FNAL option



is actively exploring filler option

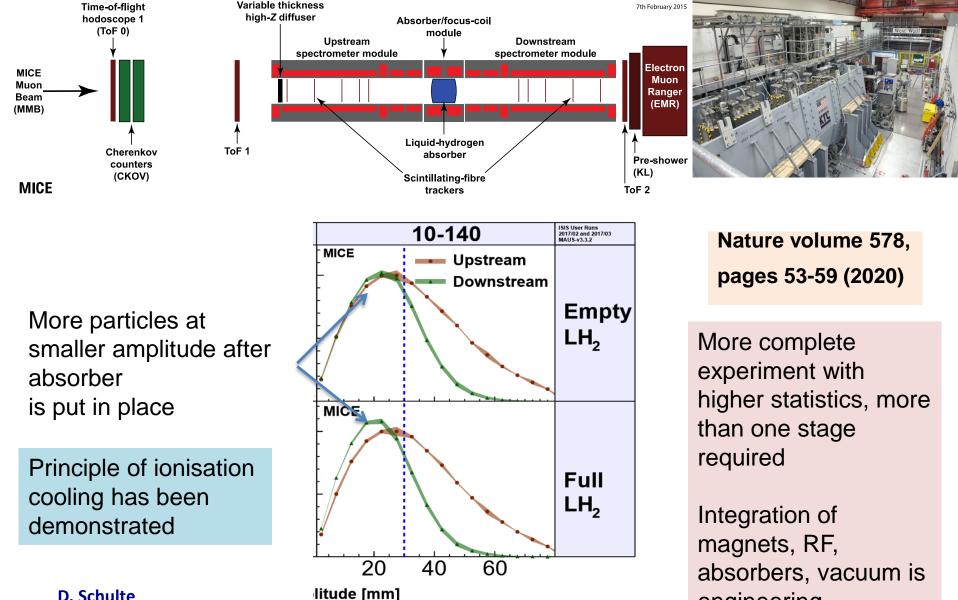
Final Cooling Challenge


6D Cooling Cell Design

the second second

MuCool: >50 MV/m in 5 T Two solutions

- H2-filled copper cavities
- Cavities with Be end caps



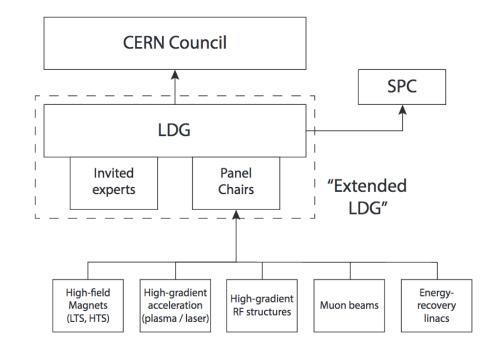
High-gradient cavities in high magnetic field

Tight integration of solenoids, RF, absorbers, instrumentation, cooling, vacuum, alignment, ...

Will aim for further optimisation This is the **unique** and **novel** system of the muon collider Will need a **test facility**

MICE (in the UK)

engineering aballanga

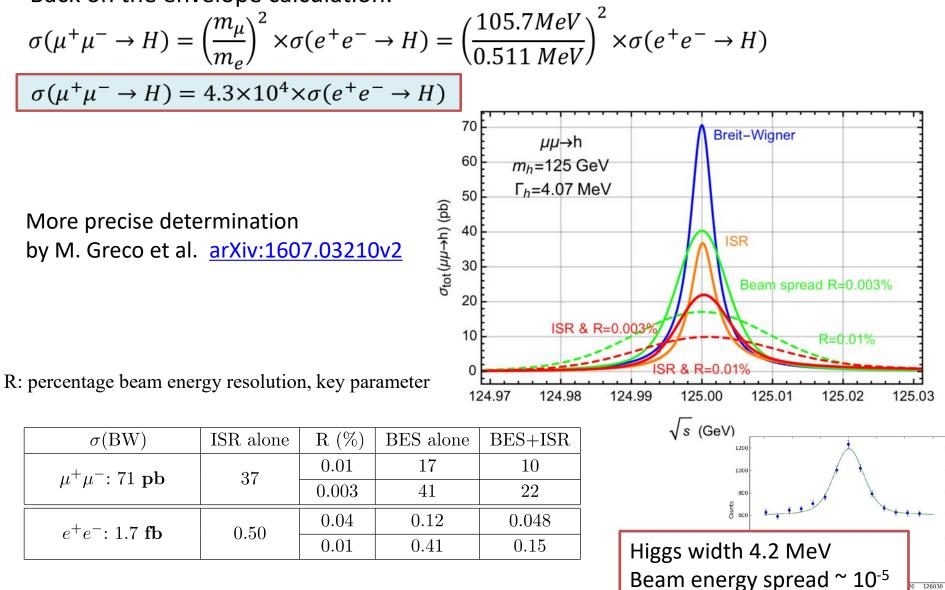

D. Schulte

European Accelerator R&D Roadmap

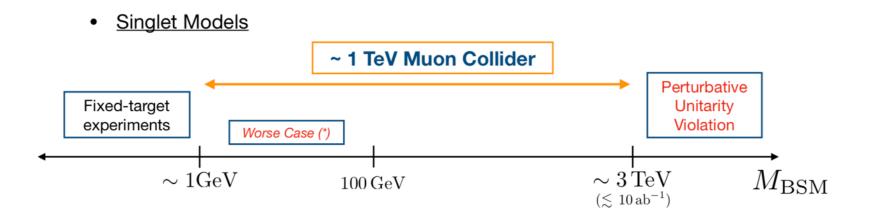
Council charged Laboratory Directors Group (LDG) to deliver European Accelerator R&D Roadmap by the end of the year

Panels

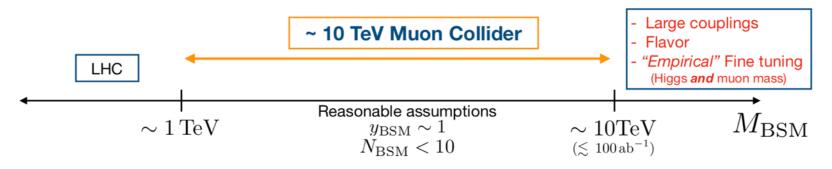
- Magnets: P. Vedrine
- Plasma: R. Assmann
- RF: S. Bousson
- Muons: D. Schulte
- ERL: M. Klein



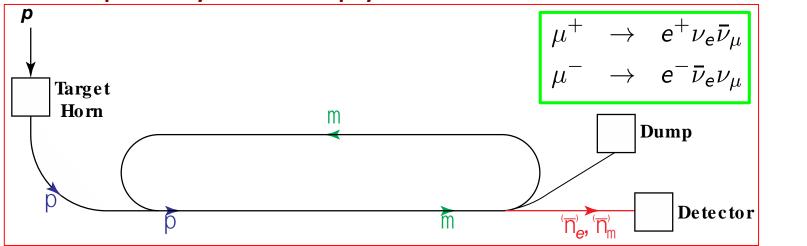
Muon Beam Panel members: Daniel Schulte (CERN, chair), Mark Palmer (BNL, co-chair), Tabea Arndt (KIT), Antoine Chance (CEA/IRFU) Jean-Pierre Delahaye (retired), Angeles Faus-Golfe (IN2P3/IJClab), Simone Gilardoni (CERN), Philippe Lebrun (European Scientific Institute), Ken Long (Imperial College London), Elias Metral (CERN), Nadia Pastrone (INFN-Torino), Lionel Quettier (CEA/IRFU), Tor Raubenheimer (SLAC), Chris Rogers (STFC-RAL), Mike Seidel (EPFL and PSI), Diktys Stratakis (FNAL), Akira Yamamoto (KEK and CERN) Contributors: Alexej Grudiev (CERN), Donatella Lucchesi (INFN-Padua), Roberto Losito (CERN), Andrea Wulzer (EPFL, CERN, Padua)


Roles of panel members and European (other regions to be added) contact persons at https://muoncollider.web.cern.ch/organisation

Lepton Colliders: $\mu vs e @ \sqrt{s=125} \text{ GeV}$


Back on the envelope calculation:

g-2 @ Muon Collider



• High-Scale EW Models

nuSTORM: neutrino from stored muons

a unique facility for neutrino physics and muon-collider test bed

- Scientific objectives:
 - 1. %-level ($v_e N$) cross sections
 - Double differential
 - 2. Sterile-neutrino/BSM search
 - Beyond Fermilab SBN

- Precise neutrino flux:
 - Normalisation: < 1%</p>
 - Energy (and flavour) precise
- $\pi \rightarrow \mu$ injection pass:
 - "Flash" of muon neutrinos

